editor's blog
Subscribe Now

450 In Belgium

Changing wafer size is a big deal. You can kiss all your old equipment good-bye and usher in a whole new suite. So what happens when you’re planning to use that wafer size for a new technology node? You really don’t want to have to have two sets of production equipment, one for each side of the wafer-size shift. But it would also be rough to develop a new wafer size at the same time as developing a new technology node. That’s risk upon risk.

I talked with Ludo Deferm at Semicon West, where 450-mm was all the rage. But this excitement is clearly about things yet to come: there’s not much equipment available yet; only one item – KLA-Tencor’s blank wafer metrology unit – has been announced. And that just ensures that you’re starting with a good blank wafer. The rest is yet to come.

And imec sees 14 nm being the starting node for 450 mm. But the 450-mm R&D facility that imec just got government help for isn’t going to be started until 2014 – you can do the math on when it’s likely to be up and running. So if we had to wait for that before we could develop 14-nm technology, we’d be a long ways away.

As it is, imec is doing 14-nm development work on 300-mm wafers – it’s just that that equipment won’t be used for production. It’s just to get the process itself up. Clearly it will take some freshening up on the new 450-mm equipment when it’s ready. By that time, they’ll already be developing the 10-nm node.

As a curious side fact, he noted that a 200-mm cleanroom is actually more expensive to build than the 450-mm facility. That’s because, back then, the whole room had to be clean. Now everything is sealed in FOUPs, so, while it’s probably not a good idea to be tracking mud into the room or smoking, the level of cleanliness in the room is actually less than it used to be. Inside the equipment, however, there’s little forgiveness for the slightest intruder.

More on the Flemish investment can be found here

Leave a Reply

featured blogs
Apr 16, 2024
In today's semiconductor era, every minute, you always look for the opportunity to enhance your skills and learning growth and want to keep up to date with the technology. This could mean you would also like to get hold of the small concepts behind the complex chip desig...
Apr 11, 2024
See how Achronix used our physical verification tools to accelerate the SoC design and verification flow, boosting chip design productivity w/ cloud-based EDA.The post Achronix Achieves 5X Faster Physical Verification for Full SoC Within Budget with Synopsys Cloud appeared ...
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

How Capacitive Absolute Encoders Enable Precise Motion Control
Encoders are a great way to provide motion feedback and capture vital rotary motion information. In this episode of Chalk Talk, Amelia Dalton and Jeff Smoot from CUI Devices investigate the benefits and drawbacks of different encoder solutions. They also explore the unique system advantages of absolute encoders and how you can get started using a CUI Devices absolute encoder in your next design.
Apr 1, 2024
2,151 views