editor's blog
Subscribe Now

Intentionally Fuzzy

All software has bugs; every system has some kind of vulnerability. And the canonical way of dealing with them is to fix the bugs or tighten the code to eliminate system weaknesses. And then we patch our systems, as anyone who has been late to the airport and has shut down their computer in a last-ditch effort to get out the door, only to have the computer say, “Updating 1 of 32… Please do not power down or unplug your computer,” can attest. (Because, when Windows decides it’s time to update, well, there’s not much in this universe that can out-prioritize that.)

Editorials aside, each of those patches required someone to find a problem, then figure out how to fix the problem, then actually fix it, and, finally, test to prove that the fix doesn’t do some other harm. And that all takes time. If the vulnerability is severe, then ne’er-do-wells could be out busily enjoying unfettered access to somewhere they’re not supposed to be while the hole is being plugged.

So, when it comes to security for important infrastructure like utilities and other industrial sites, you can’t wait for the fix. In fact, a fix might not even be forthcoming. Instead, you figure out what malevolent traffic might look like, and you block it. You’re not fixing the broken lock on the door to keep the burglar out; you’re simply putting a dog in front of the door to filter out the burglars.

This is the situation described to me by Wurldtech’s Greg Speakman and Nate Kube shortly after they announced that Siemens’s CERT lab had been certified on Wurldtech’s Achilles certification testing. Achilles is a test facility that includes “fuzzers” – tests that present equipment with traffic that is almost correct, but is mutated here or there. The idea is to see if such “nearly good” traffic can get in and cause an observable change in behavior (which might be benign or might have no deleterious effect unless sustained over time) or, worse yet, cause a system failure. They automatically create tests based on protocol standards and run those against their clients’ systems.

When issues are found, the signatures of the offending traffic enter their database and are used to strengthen the traffic filters. They claim to have found over 350 “0-days” for their clients. The oddly-named “0-day” refers to any vulnerability found by outsiders before the equipment company itself knows about it – they’ve had 0 days to respond to it.

That characterization makes sense for systems already out on the market, but apparently it still applies if a company contracts someone like Wurldtech to help with system validation before shipping the systems. The fact that the issue was found outside the company – even if at the company’s request, before any systems are shipped into the field – seems to qualify it as a 0-day (even though, if the equipment maker bought out the certification house or did similar testing in-house, then the same discovery would no longer be a 0-day).

You can find more on the recent Siemens certification in their release.

Leave a Reply

featured blogs
Jun 6, 2023
At this year's DesignCon, Meta held a session on '˜PowerTree-Based PDN Analysis, Correlation, and Signoff for MR/AR Systems.' Presented by Kundan Chand and Grace Yu from Meta, they talked about power integrity (PI) analysis using Sigrity Aurora and Power Integrity tools such...
Jun 2, 2023
I just heard something that really gave me pause for thought -- the fact that everyone experiences two forms of death (given a choice, I'd rather not experience even one)....
Jun 2, 2023
Explore the importance of big data analytics in the semiconductor manufacturing process, as chip designers pull insights from throughout the silicon lifecycle. The post Demanding Chip Complexity and Manufacturing Requirements Call for Data Analytics appeared first on New Hor...

featured video

Synopsys Solution for RTL to Signoff Power Analysis

Sponsored by Synopsys

Synopsys’ industry-leading power analysis solution built on PrimePower technology that enables early RTL exploration, low power implementation and power signoff for design of energy-efficient SoCs.

Learn more about Synopsys’ Energy-Efficient SoCs Solutions

featured paper

EC Solver Tech Brief

Sponsored by Cadence Design Systems

The Cadence® Celsius™ EC Solver supports electronics system designers in managing the most challenging thermal/electronic cooling problems quickly and accurately. By utilizing a powerful computational engine and meshing technology, designers can model and analyze the fluid flow and heat transfer of even the most complex electronic system and ensure the electronic cooling system is reliable.

Click to read more

featured chalk talk

Designing with GaN? Ask the Right Questions about Reliability
As demands for high-performance and low-cost power conversion increases, gallium nitride offers several intriguing benefits for next generation power supply design. In this episode of Chalk Talk, Amelia Dalton and Sandeep Bahl from Texas Instruments investigate the what, why and how of gallium nitride power technology. They take a closer look at the component level and in-system reliability for TI’s gallium nitride power solutions and why GaN might just be the perfect solution for your next power supply design.
Oct 4, 2022
29,494 views