editor's blog
Subscribe Now

Virtualizer and HAPS Shake Hands

Numerous systems tend to get used for verifying SoCs, and, with software now in the picture, the range is extended even further. We’ve talked before about the use of simulation, virtual prototypes, emulation, and prototyping as ways of getting both hardware and software to work, and to work together. Including their unification.

Synopsys recently took a move towards unification by bringing their Virtualizer virtual platform tool and their HAPS prototyping tool closer together. What this is means is that a design can be implemented with some parts in Virtualizer and some in HAPS and the two systems can talk to each other while running.

They actually run the SCE-MI 2 interface (traditionally found in the emulator-to-host connection), running over their UMRBus. This allows transactors to speed the interchange of data.

The architecture is very AMBA-centric; much of their DesignWare catalog relies on AMBA, and AMBA is popular, so this isn’t a big surprise. They’re open to other busses on an “ask us and we’ll consider it” basis.

The actual use of the tools isn’t so integrated. The two sides have separate programs that you run to manage them – there isn’t one unified interface that can talk to both sides. But this is partly due to the fact that they don’t traditionally see one person doing the whole thing. In the early stages, system integrators/architects would use the Virtualizer side and FPGA guys would implement the HAPS side; they would tag-team to get it up and running. Once that’s all done, then software programmers could use it (using computers more moderate than those required for the FPGA-building tools, for instance). So a single console might not have an associated use case.

The design partitioning process is also manual (although they could see the future possibility of tagging a design to automatically build the virtual and FPGA sides). Cross-triggering between the two sides is rudimentary.

This capability will be generally available in August. Why announce when they did? I’m guessing because they couldn’t talk the DAC guys into rescheduling the conference to August…

You can find more info in their release

 

Leave a Reply

featured blogs
Sep 16, 2021
I was quite happy with the static platform I'd created for my pseudo robot heads, and then some mad impetuous fool suggested servos. Oh no! Here we go again......
Sep 16, 2021
CadenceLIVE, Cadence's annual user conference, has been a great platform for Cadence technology users, developers, and industry experts to connect, share ideas and best practices solve design... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 15, 2021
Learn how chiplets form the basis of multi-die HPC processor architectures, fueling modern HPC applications and scaling performance & power beyond Moore's Law. The post What's Driving the Demand for Chiplets? appeared first on From Silicon To Software....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Accurate Full-System Thermal 3D Analysis

Sponsored by Cadence Design Systems

Designing electronics for the data center challenges designers to minimize and dissipate heat. Electrothermal co-simulation requires system components to be accurately modeled and analyzed. Learn about a true 3D solution that offers full system scalability with 3D analysis accuracy for the entire chip, package, board, and enclosure.

Click here for more information about Celsius Thermal Solver

featured paper

Configurable Input/Output Modes for PLC Systems Using the MAX22000 and MAX14914A

Sponsored by Maxim Integrated (now part of Analog Devices)

This application note features input/ components on the MAX22000 that may be used in analog input and output configuration. Circuit configurations are shown for common industrial Analog modes.

Click to read more

featured chalk talk

Build, Deploy and Manage Your FPGA-based IoT Edge Applications

Sponsored by Mouser Electronics and Intel

Designing cloud-connected applications with FPGAs can be a daunting engineering challenge. But, new platforms promise to simplify the process and make cloud-connected IoT design easier than ever. In this episode of Chalk Talk, Amelia Dalton chats with Tak Ikushima of Intel about how a collaboration between Microsoft and Intel is pushing innovation forward with a new FPGA Cloud Connectivity Kit.

Click here for more information about Terasic Technologies FPGA Cloud Connectivity Kit