editor's blog
Subscribe Now

Virtualizer and HAPS Shake Hands

Numerous systems tend to get used for verifying SoCs, and, with software now in the picture, the range is extended even further. We’ve talked before about the use of simulation, virtual prototypes, emulation, and prototyping as ways of getting both hardware and software to work, and to work together. Including their unification.

Synopsys recently took a move towards unification by bringing their Virtualizer virtual platform tool and their HAPS prototyping tool closer together. What this is means is that a design can be implemented with some parts in Virtualizer and some in HAPS and the two systems can talk to each other while running.

They actually run the SCE-MI 2 interface (traditionally found in the emulator-to-host connection), running over their UMRBus. This allows transactors to speed the interchange of data.

The architecture is very AMBA-centric; much of their DesignWare catalog relies on AMBA, and AMBA is popular, so this isn’t a big surprise. They’re open to other busses on an “ask us and we’ll consider it” basis.

The actual use of the tools isn’t so integrated. The two sides have separate programs that you run to manage them – there isn’t one unified interface that can talk to both sides. But this is partly due to the fact that they don’t traditionally see one person doing the whole thing. In the early stages, system integrators/architects would use the Virtualizer side and FPGA guys would implement the HAPS side; they would tag-team to get it up and running. Once that’s all done, then software programmers could use it (using computers more moderate than those required for the FPGA-building tools, for instance). So a single console might not have an associated use case.

The design partitioning process is also manual (although they could see the future possibility of tagging a design to automatically build the virtual and FPGA sides). Cross-triggering between the two sides is rudimentary.

This capability will be generally available in August. Why announce when they did? I’m guessing because they couldn’t talk the DAC guys into rescheduling the conference to August…

You can find more info in their release

 

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Embedded Storage in Green IoT Applications
Sponsored by Mouser Electronics and Swissbit
In this episode of Chalk Talk, Amelia Dalton and Martin Schreiber from Swissbit explore the unique set of memory requirements that Green IoT designs demand, the roles that endurance, performance and density play in flash memory solutions, and how Swissbit’s SD cards and eMMC technologies can add value to your next IoT design.
Oct 25, 2023
23,294 views