editor's blog
Subscribe Now

Virtualizer and HAPS Shake Hands

Numerous systems tend to get used for verifying SoCs, and, with software now in the picture, the range is extended even further. We’ve talked before about the use of simulation, virtual prototypes, emulation, and prototyping as ways of getting both hardware and software to work, and to work together. Including their unification.

Synopsys recently took a move towards unification by bringing their Virtualizer virtual platform tool and their HAPS prototyping tool closer together. What this is means is that a design can be implemented with some parts in Virtualizer and some in HAPS and the two systems can talk to each other while running.

They actually run the SCE-MI 2 interface (traditionally found in the emulator-to-host connection), running over their UMRBus. This allows transactors to speed the interchange of data.

The architecture is very AMBA-centric; much of their DesignWare catalog relies on AMBA, and AMBA is popular, so this isn’t a big surprise. They’re open to other busses on an “ask us and we’ll consider it” basis.

The actual use of the tools isn’t so integrated. The two sides have separate programs that you run to manage them – there isn’t one unified interface that can talk to both sides. But this is partly due to the fact that they don’t traditionally see one person doing the whole thing. In the early stages, system integrators/architects would use the Virtualizer side and FPGA guys would implement the HAPS side; they would tag-team to get it up and running. Once that’s all done, then software programmers could use it (using computers more moderate than those required for the FPGA-building tools, for instance). So a single console might not have an associated use case.

The design partitioning process is also manual (although they could see the future possibility of tagging a design to automatically build the virtual and FPGA sides). Cross-triggering between the two sides is rudimentary.

This capability will be generally available in August. Why announce when they did? I’m guessing because they couldn’t talk the DAC guys into rescheduling the conference to August…

You can find more info in their release

 

Leave a Reply

featured blogs
Jul 10, 2020
[From the last episode: We looked at the convolution that defines the CNNs that are so popular for machine vision applications.] This week we'€™re going to do some more math, although, in this case, it won'€™t be as obscure and bizarre as convolution '€“ and yet we will...
Jul 10, 2020
I need a problem that lends itself to being solved using a genetic algorithm; also, one whose evolving results can be displayed on my 12 x 12 ping pong ball array....
Jul 9, 2020
It happens all the time. We'€™re online with a designer and we'€™re looking at a connector in our picture search. He says '€œI need a connector that looks just like this one, but '€¦'€ and then he goes on to explain something he needs that'€™s unique to his desig...

Featured Video

Product Update: DesignWare® TCAM IP -- Synopsys

Sponsored by Synopsys

Join Rahul Thukral in this discussion on TCAMs, including performance and power considerations. Synopsys TCAMs are used in networking and automotive applications as they are low-risk, production-proven, and meet automotive requirements.

Click here for more information about DesignWare Foundation IP: Embedded Memories, Logic Libraries & GPIO

Featured Chalk Talk

Powering Your Innovation: Intel Enpirion Power Solutions

Sponsored by Mouser Electronics and Intel

Providing clean power for today’s complex FPGAs is a bewildering challenge. These devices can pose serious difficulties for conventional solutions based on buck converters. In this episode of Chalk Talk, Amelia Dalton chats with Jenanne Vaccaro from Intel about the new Intel Enpirion EC2650 6 amp power solution that offers significant advantages in powering complex FPGA and ASIC designs.

Click here for more information about the Intel Enpirion® EC2650QI DC-DC Voltage Bus Converter