editor's blog
Subscribe Now

A Place to Dry Your Nanoclothes

The next thing after MEMS is… OK, time’s up… NEMS. Of course. From micro to nano.

One of the materials that seems inextricably linked to NEMS is carbon, even if carbon isn’t a defining element of NEMS. More explicitly, at UC Irvine, they’re doing work on what Prof. Marc Madou calls Carbon-MEMS (or C-MEMS).

Manufacturing techniques at the nano level can be quite different from what we’re used in at the MEMS level. C-MEMS uses organic precursor chemicals to lay down a structure. When processed/heated, these structures lose 80% or more of their volume and reduce to almost pure glassy carbon. This presents an attractive alternative to trying to actually machine carbon, which is notoriously difficult.

At the recent MEMS Business Forum, Prof. Madou illustrated one type of structure his team has worked on called a “wash-line nanosensor.” These consist of a series of carbon posts; wires are then strung from post to post (like a wash-line) above whatever the substrate below is. This makes the wire accessible from all sides and distances it from any effects the substrate might have on it.

But how to make such a structure?

The posts can be made by layering an appropriate photoresist polymer down, patterning and exposing it to create the posts, and then reducing those polymer posts to glassy carbon. Step 1 done.

He showed that, given the right polymer goop, discharged through a syringe or nozzle in the presence of a voltage between the nozzle and substrate, you can “spin” a thin bead of the material which, on its own, just kind of mats up like spaghetti on a plate. They refer to this as “electro-spinning.”

Done in the presence of the posts, and spraying for 2-3 seconds, they found that the extruded polymer thread would naturally start at one post, swirl around a bit, then drift to the next post, swirl some more, etc. The spaghetti cap on each post made ohmic contact, but they wanted something not quite as messy.

So they moved the substrate with the posts a bit closer to the nozzle and then moved the stage on which it was held. Rather than the thread going where it wanted, they could direct the thread from post to post in a controlled manner, with each thread making a clean, simple connection on the top of each post.

There’s lots of magic here in the materials and viscosities and all of the other parameters involved. But, stepping back from all of that, it represents a dramatically different way of building an electromechanical structure.

Leave a Reply

featured blogs
Sep 27, 2020
https://youtu.be/EUDdGqdmTUU Made in "the Alps" Monday: Complete RF Solution: Think Outside the Chip Tuesday: The First Decade of RISC-V: A Worldwide Phenomenon Wednesday: The European... [[ Click on the title to access the full blog on the Cadence Community site. ...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

Four Ways to Improve Verification Performance and Throughput

Sponsored by Cadence Design Systems

Learn how to address your growing verification needs. Hear how Cadence Xcelium™ Logic Simulation improves your design’s performance and throughput: improving single-core engine performance, leveraging multi-core simulation, new features, and machine learning-optimized regression technology for up to 5X faster regressions.

Click here for more information about Xcelium Logic Simulation

Featured Paper

Helping physicians achieve faster, more accurate patient diagnoses with molecular test technology

Sponsored by Texas Instruments

Point-of-care molecular diagnostics (PoC) help physicians achieve faster, more accurate patient diagnoses and treatment decisions. This article breaks down how molecular test technology works and the building blocks for a PoC molecular diagnostics analyzer sensor front end system.

Read the Article

Featured Chalk Talk

Maxim's Himalaya uSLIC Portfolio

Sponsored by Mouser Electronics and Maxim Integrated

With form factors continuing to shrink, most engineers are working hard to reduce the number of discrete components in their designs. Power supplies, in particular, are problematic - often requiring a number of large components. In this episode of Chalk Talk, Amelia Dalton chats with John Woodward of Maxim Integrated about how power modules can save board space, improve performance, and help reliability.

Click here for more information about Maxim Integrated Himalaya uSLIC™ MAXM1546x Step-Down Power Modules