editor's blog
Subscribe Now

A Place to Dry Your Nanoclothes

The next thing after MEMS is… OK, time’s up… NEMS. Of course. From micro to nano.

One of the materials that seems inextricably linked to NEMS is carbon, even if carbon isn’t a defining element of NEMS. More explicitly, at UC Irvine, they’re doing work on what Prof. Marc Madou calls Carbon-MEMS (or C-MEMS).

Manufacturing techniques at the nano level can be quite different from what we’re used in at the MEMS level. C-MEMS uses organic precursor chemicals to lay down a structure. When processed/heated, these structures lose 80% or more of their volume and reduce to almost pure glassy carbon. This presents an attractive alternative to trying to actually machine carbon, which is notoriously difficult.

At the recent MEMS Business Forum, Prof. Madou illustrated one type of structure his team has worked on called a “wash-line nanosensor.” These consist of a series of carbon posts; wires are then strung from post to post (like a wash-line) above whatever the substrate below is. This makes the wire accessible from all sides and distances it from any effects the substrate might have on it.

But how to make such a structure?

The posts can be made by layering an appropriate photoresist polymer down, patterning and exposing it to create the posts, and then reducing those polymer posts to glassy carbon. Step 1 done.

He showed that, given the right polymer goop, discharged through a syringe or nozzle in the presence of a voltage between the nozzle and substrate, you can “spin” a thin bead of the material which, on its own, just kind of mats up like spaghetti on a plate. They refer to this as “electro-spinning.”

Done in the presence of the posts, and spraying for 2-3 seconds, they found that the extruded polymer thread would naturally start at one post, swirl around a bit, then drift to the next post, swirl some more, etc. The spaghetti cap on each post made ohmic contact, but they wanted something not quite as messy.

So they moved the substrate with the posts a bit closer to the nozzle and then moved the stage on which it was held. Rather than the thread going where it wanted, they could direct the thread from post to post in a controlled manner, with each thread making a clean, simple connection on the top of each post.

There’s lots of magic here in the materials and viscosities and all of the other parameters involved. But, stepping back from all of that, it represents a dramatically different way of building an electromechanical structure.

Leave a Reply

featured blogs
Jan 27, 2021
Why is my poor old noggin filled with thoughts of roaming with my friends through a post-apocalyptic dystopian metropolis ? Well, I'€™m glad you asked......
Jan 27, 2021
Here at the Cadence Academic Network, it is always important to highlight the great work being done by professors, and academia as a whole. Now that AWR software solutions is a part of Cadence, we... [[ Click on the title to access the full blog on the Cadence Community site...
Jan 27, 2021
Super-size. Add-on. Extra. More. We see terms like these a lot, whether at the drive through or shopping online. There'€™s always something else you can add to your order or put in your cart '€“ and usually at an additional cost. Fairly certain at this point most of us kn...
Jan 27, 2021
Cloud computing security starts at hyperscale data centers; learn how embedded IDE modules protect data across interfaces including PCIe 5.0 and CXL 2.0. The post Keeping Hyperscale Data Centers Safe from Security Threats appeared first on From Silicon To Software....

featured paper

Speeding Up Large-Scale EM Simulation of ICs Without Compromising Accuracy

Sponsored by Cadence Design Systems

With growing on-chip RF content, electromagnetic (EM) simulation of passives is critical — from selecting the right RF design candidates to detecting parasitic coupling. Being on-chip, accurate EM analysis requires a tie in to the process technology with process design kits (PDKs) and foundry-certified EM simulation technology. Anything short of that could compromise the RFIC’s functionality. Learn how to get the highest-in-class accuracy and 10X faster analysis.

Click here to download the whitepaper

Featured Chalk Talk

Introducing Google Coral

Sponsored by Mouser Electronics and Google

AI inference at the edge is exploding right now. Numerous designs that can’t use cloud processing for AI tasks need high-performance, low-power AI acceleration right in their embedded designs. Wouldn’t it be cool if those designs could have their own little Google TPU? In this episode of Chalk Talk, Amelia Dalton chats with James McKurkin of Google about the Google Coral edge TPU.

More information about Coral System on Module