editor's blog
Subscribe Now

What’s In a Name

We’re all still getting calibrated on sensors, and we can sometimes get tripped up on terminology. In discussions about their sensor fusion IP, Movea explicitly included some definitions to make sure we were aligned.

Most prominent is their finessing of the mythical 9-axis or 9-DoF sensor. They do this by distinguishing between true degrees of freedom and axes. Spatial motion involves only six true degrees of freedom: 3 dimensions linear and three dimensional rotational. That’s all there is. The problem is that when accelerometers (which handle 3D linear) and gyroscopes (which handle 3D rotational) are joined by magnetometers, which also position in 3 dimensions, many marketers blithely add the degrees of freedom together to get 9 of them.

The problem is, the magnetometer’s three degrees of freedom overlap those of the other two sensors. We haven’t magically entered a new world that has three completely new ways of moving; we’re just getting a new view of the existing six degrees of freedom.

Movea is more permissive with the term “axis,” allowing each sensor its own axes and making them additive. So an accelerometer/gyroscope/magnetometer combo, in their parlance, has six degrees of freedom and nine axes.

Other lexical distinctions they provide:

–          Axial sensors, which provide, essentially, a vector result, with a value for each axis; versus scalar sensors, like pressure sensors, which simply provide one number as a result

–          Motion sensing categories, from detection, which is Boolean – either there is motion or there isn’t – to classification, which categorize movements like gestures into discrete buckets, to estimation, where a value from a continuous range is reported – part of what separates full motion processing from gesture recognition.

Leave a Reply

featured blogs
Apr 12, 2024
Like any software application or electronic gadget, software updates are crucial for Cadence OrCAD X and Allegro X applications as well. These software updates, often referred to as hotfixes, include support for new features and critical bug fixes made available to the users ...
Apr 11, 2024
See how Achronix used our physical verification tools to accelerate the SoC design and verification flow, boosting chip design productivity w/ cloud-based EDA.The post Achronix Achieves 5X Faster Physical Verification for Full SoC Within Budget with Synopsys Cloud appeared ...
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Littelfuse Protection IC (eFuse)
If you are working on an industrial, consumer, or telecom design, protection ICs can offer a variety of valuable benefits including reverse current protection, over temperature protection, short circuit protection, and a whole lot more. In this episode of Chalk Talk, Amelia Dalton and Pete Pytlik from Littelfuse explore the key features of protection ICs, how protection ICs compare to conventional discrete component solutions, and how you can take advantage of Littelfuse protection ICs in your next design.
May 8, 2023
40,376 views