editor's blog
Subscribe Now

Faster Simulation on GPUs

At last week’s SNUG, I had a chat with Uri Tal, CEO of startup Rocketick, about their simulation acceleration technology. What they do bears some resemblance to the parallelization semi-automation done by Vector Fabrics or the exploration done by CriticalBlue, except that here it’s working with Verilog instead of C and it’s fully automated and transparent to the user. He claims they can accelerate simulation by over 10X.

They use a GPU to achieve this kind of parallelization. This has promise both for in-house simulation farms and cloud-based simulation, where GPUs are available (although the cloud hasn’t been their focus).

What they do is create a directed flow graph (DFG) from the Verilog code and then go through and figure out which parts they can accelerate. Each such part becomes its own thread for the GPU. The acceleratable parts tend to be the synthesizable portions of the code (as hardware logic tends to be highly parallel). They do this on a statement-by-statement basis while keeping an eye on the dependencies – if there are too many dependencies, they may change the partition to reduce the size of the dependency cutset. What is left unaccelerated either couldn’t be accelerated or simply didn’t make sense to accelerate.

So, based on this, the tool converts a completely unaccelerated simulation into portions that are set aside for the GPU and the remaining bits that are re-generated for standard simulation. The accelerated portion is attached to the simulation using PLI.

The accelerated threads are turned into a byte code that is executed by a run-time engine. This makes the accelerated “code” portable onto any platform; only the runtime engine must be ported. They also manage memory carefully: the GPU uses very wide-word memory, so random byte accesses can be very inefficient; they manage the memory on a per-thread basis to get as much as possible out of each memory read (or write).

The accelerated threads dump all the usual files for later analysis by viewers and debuggers. They interface directly with SpringSoft’s Siloti to identify “essential” signals.

You can find more on their website.

Leave a Reply

featured blogs
Jan 26, 2022
With boards becoming more complex and lightweight at the same time, designing and manufacturing a cost-effective and reliable PCB has assumed greater significance than ever before. Inaccurate or... [[ Click on the title to access the full blog on the Cadence Community site. ...
Jan 26, 2022
PCIe 5.0 designs are currently in massive deployment; learn about the standard and explore PCIe 5.0 applications and the importance of silicon-proven IP. The post The PCI Express 5.0 Superhighway Is Wide, Fast, and Ready for Your Designs appeared first on From Silicon To Sof...
Jan 24, 2022
I just created a handy-dandy one-page Quick-Quick-Start Guide for seniors that covers their most commonly asked questions pertaining to the iPhone SE....

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

Enhancing PSAP Audio Performance and Power Efficiency in Hearables with Anti-Noise

Sponsored by Analog Devices

PSAP enhances user's listening experiences with hearables in challenging environments. Long delay in the audio system creates distortion known as comb effect in PSAP. This paper investigates the root cause of the comb effect and explains how a new anti-noise device yields a superior system performance compared to conventional PSAP solutions.

Click here to read more

featured chalk talk

Vibration Sensing with LoRaWAN

Sponsored by Mouser Electronics and Advantech

Vibration sensing is an integral part of today’s connected industrial designs but Bluetooth, WiFi, and Zigbee may not be the best solution for this kind of sensing in an industrial setting. In this episode of Chalk Talk, Amelia Dalton chats with Andrew Lund about LoRaWAN for vibration sensing. They investigate why LoRaWAN is perfect for industrial vibration sensing, the role that standards play in these kinds of systems, and why 3 axis detection and real-time monitoring can make all the difference in your next industrial design.

Click here for more information about Advantech WISE-2410 LoRaWAN Wireless Sensor