editor's blog
Subscribe Now

Faster Simulation on GPUs

At last week’s SNUG, I had a chat with Uri Tal, CEO of startup Rocketick, about their simulation acceleration technology. What they do bears some resemblance to the parallelization semi-automation done by Vector Fabrics or the exploration done by CriticalBlue, except that here it’s working with Verilog instead of C and it’s fully automated and transparent to the user. He claims they can accelerate simulation by over 10X.

They use a GPU to achieve this kind of parallelization. This has promise both for in-house simulation farms and cloud-based simulation, where GPUs are available (although the cloud hasn’t been their focus).

What they do is create a directed flow graph (DFG) from the Verilog code and then go through and figure out which parts they can accelerate. Each such part becomes its own thread for the GPU. The acceleratable parts tend to be the synthesizable portions of the code (as hardware logic tends to be highly parallel). They do this on a statement-by-statement basis while keeping an eye on the dependencies – if there are too many dependencies, they may change the partition to reduce the size of the dependency cutset. What is left unaccelerated either couldn’t be accelerated or simply didn’t make sense to accelerate.

So, based on this, the tool converts a completely unaccelerated simulation into portions that are set aside for the GPU and the remaining bits that are re-generated for standard simulation. The accelerated portion is attached to the simulation using PLI.

The accelerated threads are turned into a byte code that is executed by a run-time engine. This makes the accelerated “code” portable onto any platform; only the runtime engine must be ported. They also manage memory carefully: the GPU uses very wide-word memory, so random byte accesses can be very inefficient; they manage the memory on a per-thread basis to get as much as possible out of each memory read (or write).

The accelerated threads dump all the usual files for later analysis by viewers and debuggers. They interface directly with SpringSoft’s Siloti to identify “essential” signals.

You can find more on their website.

Leave a Reply

featured blogs
Apr 19, 2024
Data type conversion is a crucial aspect of programming that helps you handle data across different data types seamlessly. The SKILL language supports several data types, including integer and floating-point numbers, character strings, arrays, and a highly flexible linked lis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Digi XBee 3 Global Cellular Solutions
Sponsored by Mouser Electronics and Digi
Adding cellular capabilities to your next design can be a complicated, time consuming process. In this episode of Chalk Talk, Amelia Dalton and Alec Jahnke from Digi chat about how Digi XBee Global Cellular Solutions can help you navigate the complexities of adding cellular connectivity to your next design. They investigate how the Digi XBee software can help you monitor and manage your connected devices and how the Digi Xbee 3 cellular ecosystem can help future proof your next design.
Nov 6, 2023
21,744 views