editor's blog
Subscribe Now

Faster Simulation on GPUs

At last week’s SNUG, I had a chat with Uri Tal, CEO of startup Rocketick, about their simulation acceleration technology. What they do bears some resemblance to the parallelization semi-automation done by Vector Fabrics or the exploration done by CriticalBlue, except that here it’s working with Verilog instead of C and it’s fully automated and transparent to the user. He claims they can accelerate simulation by over 10X.

They use a GPU to achieve this kind of parallelization. This has promise both for in-house simulation farms and cloud-based simulation, where GPUs are available (although the cloud hasn’t been their focus).

What they do is create a directed flow graph (DFG) from the Verilog code and then go through and figure out which parts they can accelerate. Each such part becomes its own thread for the GPU. The acceleratable parts tend to be the synthesizable portions of the code (as hardware logic tends to be highly parallel). They do this on a statement-by-statement basis while keeping an eye on the dependencies – if there are too many dependencies, they may change the partition to reduce the size of the dependency cutset. What is left unaccelerated either couldn’t be accelerated or simply didn’t make sense to accelerate.

So, based on this, the tool converts a completely unaccelerated simulation into portions that are set aside for the GPU and the remaining bits that are re-generated for standard simulation. The accelerated portion is attached to the simulation using PLI.

The accelerated threads are turned into a byte code that is executed by a run-time engine. This makes the accelerated “code” portable onto any platform; only the runtime engine must be ported. They also manage memory carefully: the GPU uses very wide-word memory, so random byte accesses can be very inefficient; they manage the memory on a per-thread basis to get as much as possible out of each memory read (or write).

The accelerated threads dump all the usual files for later analysis by viewers and debuggers. They interface directly with SpringSoft’s Siloti to identify “essential” signals.

You can find more on their website.

Leave a Reply

featured blogs
Sep 11, 2024
In which we cogitate, ruminate, and pontificate on the things you can do to further your goal of landing (and keeping) a job in engineering...

featured paper

A game-changer for IP designers: design-stage verification

Sponsored by Siemens Digital Industries Software

In this new technical paper, you’ll gain valuable insights into how, by moving physical verification earlier in the IP design flow, you can locate and correct design errors sooner, reducing costs and getting complex designs to market faster. Dive into the challenges of hard, soft and custom IP creation, and learn how to run targeted, real-time or on-demand physical verification with precision, earlier in the layout process.

Read more

featured chalk talk

It’s the little things that get you; Light to Voltage Converters
In this episode of Chalk Talk, Amelia Dalton and Ed Mullins from Analog Devices chat about the what, where, and how of photodiode amplifiers. They discuss the challenges involved in designing these kinds of components, the best practices for analyzing the stability of photodiode amplifiers, and how Analog Devices can help you with your next photodiode amplifier design.
Apr 22, 2024
25,043 views