editor's blog
Subscribe Now

Faster Simulation on GPUs

At last week’s SNUG, I had a chat with Uri Tal, CEO of startup Rocketick, about their simulation acceleration technology. What they do bears some resemblance to the parallelization semi-automation done by Vector Fabrics or the exploration done by CriticalBlue, except that here it’s working with Verilog instead of C and it’s fully automated and transparent to the user. He claims they can accelerate simulation by over 10X.

They use a GPU to achieve this kind of parallelization. This has promise both for in-house simulation farms and cloud-based simulation, where GPUs are available (although the cloud hasn’t been their focus).

What they do is create a directed flow graph (DFG) from the Verilog code and then go through and figure out which parts they can accelerate. Each such part becomes its own thread for the GPU. The acceleratable parts tend to be the synthesizable portions of the code (as hardware logic tends to be highly parallel). They do this on a statement-by-statement basis while keeping an eye on the dependencies – if there are too many dependencies, they may change the partition to reduce the size of the dependency cutset. What is left unaccelerated either couldn’t be accelerated or simply didn’t make sense to accelerate.

So, based on this, the tool converts a completely unaccelerated simulation into portions that are set aside for the GPU and the remaining bits that are re-generated for standard simulation. The accelerated portion is attached to the simulation using PLI.

The accelerated threads are turned into a byte code that is executed by a run-time engine. This makes the accelerated “code” portable onto any platform; only the runtime engine must be ported. They also manage memory carefully: the GPU uses very wide-word memory, so random byte accesses can be very inefficient; they manage the memory on a per-thread basis to get as much as possible out of each memory read (or write).

The accelerated threads dump all the usual files for later analysis by viewers and debuggers. They interface directly with SpringSoft’s Siloti to identify “essential” signals.

You can find more on their website.

Leave a Reply

featured blogs
Nov 29, 2022
Smart manufacturing '“ the use of nascent technology within the industrial Internet of things (IIoT) to address traditional manufacturing challenges '“ is leading a supply chain revolution, resulting in smart, connected, and intelligent environments, capable of self-operati...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 21, 2022
By Hossam Sarhan With the growing complexity of system-on-chip designs and technology scaling, multiple power domains are needed to optimize… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

How to Harness the Massive Amounts of Design Data Generated with Every Project

Sponsored by Cadence Design Systems

Long gone are the days where engineers imported text-based reports into spreadsheets and sorted the columns to extract useful information. Introducing the Cadence Joint Enterprise Data and AI (JedAI) platform created from the ground up for EDA data such as waveforms, workflows, RTL netlists, and more. Using Cadence JedAI, engineering teams can visualize the data and trends and implement practical design strategies across the entire SoC design for improved productivity and quality of results.

Learn More

featured paper

How SHP in plastic packaging addresses 3 key space application design challenges

Sponsored by Texas Instruments

TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.

Click to read more

featured chalk talk

In-Cabin Monitoring Systems (ICMS) Using Automotive Short Range Radar

Sponsored by Infineon

Worldwide regulation and legislation is driving a demand for automotive in-cabin monitoring systems. In this episode of Chalk Talk, Michael Thomas and Amelia Dalton investigate how short range radar can be utilized for a variety of in-cabin monitoring systems. They also examine the implementation of these different systems and how Infineon’s low-cost and low power radar solutions could make our vehicles safer than ever before.

Click here for more information about Infineon In-Cabin Monitoring System (ICMS)