editor's blog
Subscribe Now

Less Back-Talk

RFID tags are everywhere, but they’re rather primitive as high-tech devices go. They’re programmed to do one thing: repeat a message over and over, like so many seagulls chanting, “Mine. Mine. Mine.” And, like a flock of seagulls, if you get a bunch of them going, then it’s hard to tell what any one of them is saying.

This can limit usage of RFID tags in situations where there are a lot of them very close together – say, in the back of a delivery truck. If you want to do an inventory (of sorts), given a strong enough field to activate everything, they will all talk on top of each other.

Imec took a stab at the first bidirectional RFID tags – ones that would take direction from the reader before just chattering away. The idea is that the RFID reader could ask that only tags with a particular characteristic respond; any tags not meeting that characteristic would be powered up, but remain silent.

In this use model, for instance, a dairy delivery truck could be queried to ensure that there was milk on board; any non-milk items would not respond. The query could then be refined by, say, brand.

This has its limits, of course. You have to know what you’re asking for in this model. I asked the presenter after his ISSCC presentation about this, and he agreed that for broader capability, new protocols are needed. For example, there’s no way to say, “OK, roll call: who’s on board?” and have the tags all respond in some kind of order, one at a time. And, of course, it may not help at all with security considerations – something snuck into the mix with no RFID tag would remain undetected.

But, ultimately, that wasn’t their goal; they were simply demonstrating the first bidirectional communication, and further work can go from there. In particular, this was the application that featured their new metal oxide (“MOxFET”) thin-film transistors.

You can find more details in the ISSCC proceedings, session 18.3

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Embedded Storage in Green IoT Applications
Sponsored by Mouser Electronics and Swissbit
In this episode of Chalk Talk, Amelia Dalton and Martin Schreiber from Swissbit explore the unique set of memory requirements that Green IoT designs demand, the roles that endurance, performance and density play in flash memory solutions, and how Swissbit’s SD cards and eMMC technologies can add value to your next IoT design.
Oct 25, 2023
23,168 views