editor's blog
Subscribe Now

Less Back-Talk

RFID tags are everywhere, but they’re rather primitive as high-tech devices go. They’re programmed to do one thing: repeat a message over and over, like so many seagulls chanting, “Mine. Mine. Mine.” And, like a flock of seagulls, if you get a bunch of them going, then it’s hard to tell what any one of them is saying.

This can limit usage of RFID tags in situations where there are a lot of them very close together – say, in the back of a delivery truck. If you want to do an inventory (of sorts), given a strong enough field to activate everything, they will all talk on top of each other.

Imec took a stab at the first bidirectional RFID tags – ones that would take direction from the reader before just chattering away. The idea is that the RFID reader could ask that only tags with a particular characteristic respond; any tags not meeting that characteristic would be powered up, but remain silent.

In this use model, for instance, a dairy delivery truck could be queried to ensure that there was milk on board; any non-milk items would not respond. The query could then be refined by, say, brand.

This has its limits, of course. You have to know what you’re asking for in this model. I asked the presenter after his ISSCC presentation about this, and he agreed that for broader capability, new protocols are needed. For example, there’s no way to say, “OK, roll call: who’s on board?” and have the tags all respond in some kind of order, one at a time. And, of course, it may not help at all with security considerations – something snuck into the mix with no RFID tag would remain undetected.

But, ultimately, that wasn’t their goal; they were simply demonstrating the first bidirectional communication, and further work can go from there. In particular, this was the application that featured their new metal oxide (“MOxFET”) thin-film transistors.

You can find more details in the ISSCC proceedings, session 18.3

Leave a Reply

featured blogs
Apr 14, 2021
Hybrid Cloud architecture enables innovation in AI chip design; learn how our partnership with IBM combines the best in EDA & HPC to improve AI performance. The post Synopsys and IBM Research: Driving Real Progress in Large-Scale AI Silicon and Implementing a Hybrid Clou...
Apr 13, 2021
The human brain is very good at understanding the world around us.  An everyday example can be found when driving a car.  An experienced driver will be able to judge how large their car is, and how close they can approach an obstacle.  The driver does not need ...
Apr 13, 2021
If a picture is worth a thousand words, a video tells you the entire story. Cadence's subsystem SoC silicon for PCI Express (PCIe) 5.0 demo video shows you how we put together the latest... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Apr 12, 2021
The Semiconductor Ecosystem- It is the definition of '€œHigh Tech'€, but it isn'€™t just about… The post Calibre and the Semiconductor Ecosystem appeared first on Design with Calibre....

featured video

The Verification World We Know is About to be Revolutionized

Sponsored by Cadence Design Systems

Designs and software are growing in complexity. With verification, you need the right tool at the right time. Cadence® Palladium® Z2 emulation and Protium™ X2 prototyping dynamic duo address challenges of advanced applications from mobile to consumer and hyperscale computing. With a seamlessly integrated flow, unified debug, common interfaces, and testbench content across the systems, the dynamic duo offers rapid design migration and testing from emulation to prototyping. See them in action.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

featured chalk talk

Medical Device Security

Sponsored by Siemens Digital Industries Software

In the new era of connected medical devices, securing embedded systems has become more important than ever. But, there is a lot medical device designers can borrow from current best-practices for embedded security in general. In this episode of Chalk Talk, Amelia Dalton chats with Robert Bates from Mentor about strategies and challenges for securing modern medical devices and systems.

Click here to download a whitepaper called "Medical Device Security: Achieving Regulatory Approval"