editor's blog
Subscribe Now

Inorganic n-Type Thin-Film Transistors

We’ve seen before that organic approaches to transistors have focused on p-type transistors. While n-type materials have become more available, organic CMOS still isn’t widespread.

In an ISSCC paper, imec made reference to an inorganic thin-film transistor (TFT) that makes use of metal oxide (I’m tempted to call these MOxFETs). We’ll have more on that story in another posting; before getting into that, however, I wanted to learn more about exactly what these MOxFETs are.

It turns out that metal-oxide TFTs have been worked on for some time, but with a couple processing variants that limited their use. Vacuum sputtering, which yields the best mobility (> 10 cm2/Vs) costs money and limits the size of the circuit; solution-based materials are more promising because they can be deposited under “ambient” conditions over a larger substrate.

But there has still been one issue: these devices had to be annealed at temperatures of 350 °C and higher, limiting the materials that could be used in the processing. So imec’s contribution was an indium-based solution that could be annealed at 250 °C. This let them deposit this stuff on flexible substrates. While not performing as well as sputtered films, they still achieved mobility over 2 cm2/Vs.

Just as n-type organic devices have left something to be desired, so metal-oxide p-type devices aren’t so great – better materials and a wider processing window are needed. But it’s possible to use the inorganic n-type with the organic p-type to build complementary circuits.

The process starts with the gate contacts and Al2O3 high-K gate at the bottom of the stack, and then lays down the metal-oxide layer, with metal over that for the source/drain contacts. The pentacene organic film is then laid down, contacting that same metal layer from above for its source and drain.

More details can be found in their paper, “Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs” published in Organic Electronics on 8/26 of last year.

Leave a Reply

featured blogs
Apr 19, 2024
Data type conversion is a crucial aspect of programming that helps you handle data across different data types seamlessly. The SKILL language supports several data types, including integer and floating-point numbers, character strings, arrays, and a highly flexible linked lis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Package Evolution for MOSFETs and Diodes
Sponsored by Mouser Electronics and Vishay
A limiting factor for both MOSFETs and diodes is power dissipation per unit area and your choice of packaging can make a big difference in power dissipation. In this episode of Chalk Talk, Amelia Dalton and Brian Zachrel from Vishay investigate how package evolution has led to new advancements in diodes and MOSFETs including minimizing package resistance, increasing power density, and more! They also explore the benefits of using Vishay’s small and efficient PowerPAK® and eSMP® packages and the migration path you will need to keep in mind when using these solutions in your next design.
Jul 10, 2023
31,736 views