editor's blog
Subscribe Now

What Comes After Silicon?

It’s the perennial question (or one of them): how long can silicon last?

Without giving dates, imec’s Rudy Lauwereins opined that silicon will be replaced by GaAs and by germanium.

This is like back to the future in two different ways. Germanium was the semiconductor of choice before silicon was taken up – back when few were actually making a choice. Meanwhile, GaAs was supposed to take over many years ago, and silicon refused to yield its premier position.

One of the things that gives silicon an edge is its cost: ingots of GaAs and germanium will be expensive. Which is why that’s not what imec sees coming. They see deposition (not transfer) of the materials on silicon. Why waste expensive materials on what is essentially an inactive substrate?

But, you point out… you’re going to have a hard time matching the lattices between the silicon substrate and the deposited active layer. This is true, and it’s where much of the work is being done. But that mismatch can actually be useful, providing strain that improves performance.

They are apparently working this with an unnamed company, preparing a fab transfer..

Leave a Reply

featured blogs
Dec 2, 2024
The Wi-SUN Smart City Living Lab Challenge names the winners with Farmer's Voice, a voice command app for agriculture use, taking first place. Read the blog....
Dec 3, 2024
I've just seen something that is totally droolworthy, which may explain why I'm currently drooling all over my keyboard....

Libby's Lab

Libby's Lab - Scopes Out Littelfuse's SRP1 Solid State Relays

Sponsored by Mouser Electronics and Littelfuse

In this episode of Libby's Lab, Libby and Demo investigate quiet, reliable SRP1 solid state relays from Littelfuse availavble on Mouser.com. These multi-purpose relays give engineers a reliable, high-endurance alternative to mechanical relays that provide silent operation and superior uptime.

Click here for more information about Littelfuse SRP1 High-Endurance Solid-State Relays

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

ADI Pressure Sensing Solutions Enable the Future of Industrial Intelligent Edge
The intelligent edge enables greater autonomy, sustainability, connectivity, and security for a variety of electronic designs today. In this episode of Chalk Talk, Amelia Dalton and Maurizio Gavardoni from Analog Devices explore how the intelligent edge is driving a transformation in industrial automation, the role that pressure sensing solutions play in IIoT designs and how Analog Devices is reshaping pressure sensor manufacturing with single flow calibration.
Aug 2, 2024
60,239 views