editor's blog
Subscribe Now

What Comes After Silicon?

It’s the perennial question (or one of them): how long can silicon last?

Without giving dates, imec’s Rudy Lauwereins opined that silicon will be replaced by GaAs and by germanium.

This is like back to the future in two different ways. Germanium was the semiconductor of choice before silicon was taken up – back when few were actually making a choice. Meanwhile, GaAs was supposed to take over many years ago, and silicon refused to yield its premier position.

One of the things that gives silicon an edge is its cost: ingots of GaAs and germanium will be expensive. Which is why that’s not what imec sees coming. They see deposition (not transfer) of the materials on silicon. Why waste expensive materials on what is essentially an inactive substrate?

But, you point out… you’re going to have a hard time matching the lattices between the silicon substrate and the deposited active layer. This is true, and it’s where much of the work is being done. But that mismatch can actually be useful, providing strain that improves performance.

They are apparently working this with an unnamed company, preparing a fab transfer..

Leave a Reply

featured blogs
Sep 21, 2023
Wireless communication in workplace wearables protects and boosts the occupational safety and productivity of industrial workers and front-line teams....
Sep 21, 2023
Labforge is a Waterloo, Ontario-based company that designs, builds, and manufactures smart cameras used in industrial automation and defense applications. By bringing artificial intelligence (AI) into their vision systems with Cadence , they can automate tasks that are diffic...
Sep 21, 2023
At Qualcomm AI Research, we are working on applications of generative modelling to embodied AI and robotics, in order to enable more capabilities in robotics....
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....
Sep 21, 2023
See how we're accelerating the multi-die system chip design flow with partner Samsung Foundry, making it easier to meet PPA and time-to-market goals.The post Samsung Foundry and Synopsys Accelerate Multi-Die System Design appeared first on Chip Design....

Featured Video

Chiplet Architecture Accelerates Delivery of Industry-Leading Intel® FPGA Features and Capabilities

Sponsored by Intel

With each generation, packing millions of transistors onto shrinking dies gets more challenging. But we are continuing to change the game with advanced, targeted FPGAs for your needs. In this video, you’ll discover how Intel®’s chiplet-based approach to FPGAs delivers the latest capabilities faster than ever. Find out how we deliver on the promise of Moore’s law and push the boundaries with future innovations such as pathfinding options for chip-to-chip optical communication, exploring new ways to deliver better AI, and adopting UCIe standards in our next-generation FPGAs.

To learn more about chiplet architecture in Intel FPGA devices visit https://intel.ly/45B65Ij

featured paper

Intel's Chiplet Leadership Delivers Industry-Leading Capabilities at an Accelerated Pace

Sponsored by Intel

We're proud of our long history of rapid innovation in #FPGA development. With the help of Intel's Embedded Multi-Die Interconnect Bridge (EMIB), we’ve been able to advance our FPGAs at breakneck speed. In this blog, Intel’s Deepali Trehan charts the incredible history of our chiplet technology advancement from 2011 to today, and the many advantages of Intel's programmable logic devices, including the flexibility to combine a variety of IP from different process nodes and foundries, quicker time-to-market for new technologies and the ability to build higher-capacity semiconductors

To learn more about chiplet architecture in Intel FPGA devices visit: https://intel.ly/47JKL5h

featured chalk talk

Johnson RF Connectivity Solutions
The growing need for remote patient monitoring and wireless connectivity has made RF in medicine applications more important than ever before. In this episode of Chalk Talk, Amelia Dalton chats with Ketan Thakkar from Cinch Connectivity Solutions about the growing trends in medicine today that are encouraging the use of RF, why higher frequency, smaller form factor, cable assembly expansion and adapter expansion are vital components in today’s medical applications and why Johnson medical solutions could be a great fit for your next medical design.
Nov 28, 2022
35,037 views