editor's blog
Subscribe Now

What Comes After Silicon?

It’s the perennial question (or one of them): how long can silicon last?

Without giving dates, imec’s Rudy Lauwereins opined that silicon will be replaced by GaAs and by germanium.

This is like back to the future in two different ways. Germanium was the semiconductor of choice before silicon was taken up – back when few were actually making a choice. Meanwhile, GaAs was supposed to take over many years ago, and silicon refused to yield its premier position.

One of the things that gives silicon an edge is its cost: ingots of GaAs and germanium will be expensive. Which is why that’s not what imec sees coming. They see deposition (not transfer) of the materials on silicon. Why waste expensive materials on what is essentially an inactive substrate?

But, you point out… you’re going to have a hard time matching the lattices between the silicon substrate and the deposited active layer. This is true, and it’s where much of the work is being done. But that mismatch can actually be useful, providing strain that improves performance.

They are apparently working this with an unnamed company, preparing a fab transfer..

Leave a Reply

featured blogs
Nov 29, 2022
Smart manufacturing '“ the use of nascent technology within the industrial Internet of things (IIoT) to address traditional manufacturing challenges '“ is leading a supply chain revolution, resulting in smart, connected, and intelligent environments, capable of self-operati...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 21, 2022
By Hossam Sarhan With the growing complexity of system-on-chip designs and technology scaling, multiple power domains are needed to optimize… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Unique AMS Emulation Technology

Sponsored by Synopsys

Learn about Synopsys' collaboration with DARPA and other partners to develop a one-of-a-kind, high-performance AMS silicon verification capability. Please watch the video interview or read it online.

Read the interview online:

featured paper

How SHP in plastic packaging addresses 3 key space application design challenges

Sponsored by Texas Instruments

TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.

Click to read more

featured chalk talk

Battery Management System Overview

Sponsored by Infineon

Effective battery management for electric vehicles is a critical design element faced by engineers today. In this episode of Chalk Talk, Amelia Dalton chats with Marco Castellanos from Infineon about the key functions of battery management for electric vehicles, the role that cell balancing, voltage measurement and temperature measurement play in battery management ICs, and how wireless battery management using bluetooth low energy can help you tackle a variety of battery management challenges for your next design.

Click here for more information about Infineon Battery Management ICs