editor's blog
Subscribe Now

What Comes After Silicon?

It’s the perennial question (or one of them): how long can silicon last?

Without giving dates, imec’s Rudy Lauwereins opined that silicon will be replaced by GaAs and by germanium.

This is like back to the future in two different ways. Germanium was the semiconductor of choice before silicon was taken up – back when few were actually making a choice. Meanwhile, GaAs was supposed to take over many years ago, and silicon refused to yield its premier position.

One of the things that gives silicon an edge is its cost: ingots of GaAs and germanium will be expensive. Which is why that’s not what imec sees coming. They see deposition (not transfer) of the materials on silicon. Why waste expensive materials on what is essentially an inactive substrate?

But, you point out… you’re going to have a hard time matching the lattices between the silicon substrate and the deposited active layer. This is true, and it’s where much of the work is being done. But that mismatch can actually be useful, providing strain that improves performance.

They are apparently working this with an unnamed company, preparing a fab transfer..

Leave a Reply

featured blogs
Feb 24, 2021
mmWave applications are all the rage. Why? Simply put, the 5G tidal wave is coming. Also, ADAS systems use 24 GHz for SRR applications and 77 GHz for LRR applications. Obviously, the world needs mmWave tech! Traditional mmWave technology spans the frequency range of 30 –...
Feb 24, 2021
Crowbits are programmable, LEGO-compatible, magnetically-coupled electronic blocks to interest kids in electronics and computing and facilitate their STEM activities....
Feb 24, 2021
With DVCon 2021 on the horizon we share a primer on our datapath verification technology HECTOR, exploring its impact on machine learning & AI chip design. The post Why Datapath Validation Is Important'€”and How HECTOR Technology Can Help appeared first on From Silico...
Feb 24, 2021
When I worked for Cadence back in the early oughts, we developed a layout database called OpenAccess, usually abbreviated to OA. It had actually been designed from the ground up to be the native... [[ Click on the title to access the full blog on the Cadence Community site. ...

featured video

Silicon-Proven Automotive-Grade DesignWare IP

Sponsored by Synopsys

Get the latest on Synopsys' automotive IP portfolio supporting ISO 26262 functional safety, reliability, and quality management standards, with an available architecture for SoC development and safety management.

Click here for more information

featured paper

Using the DS28E18, The Basics

Sponsored by Maxim Integrated

This application note goes over the basics of using the DS28E18 1-Wire® to I2C/SPI Bridge with Command Sequencer and discusses the steps to get it up and running quickly. It then shows how to use the device with two different devices. The first device is an I2C humidity/temperature sensor and the second one is an SPI temperature sensor device. It concludes with detailed logs of each command.

Click here to download the whitepaper

Featured Chalk Talk

0 to 112 (Gbps PAM4) in 5 Seconds

Sponsored by Samtec

With serial connections hitting 112Gbps, we can’t mess around with our interconnect. We need engineered solutions that will keep those eyes open and deliver the signal integrity we need in our high-speed designs. In this episode of Chalk Talk, Amelia Dalton talks with Matt Burns of Samtec about the interconnect options for speeds up to 112Gbs, and Samtec’s Flyover interconnect technology.

Click here to download the Silicon-to-Silicon Solutions Guide