editor's blog
Subscribe Now

More Selective Light Sensing

Smartphones and other similar devices have a number of sensors on them for different purposes. In particular, there are two light-oriented ones that work differently and accomplish different things.

One is an ambient light sensor; it helps decide how bright or dim to make the screen, or perhaps whether your keyboard needs some backlight.

The other is the proximity detector. It works in conjunction with a small IR LED; the sensor measures the reflections of light from that LED to decide whether the sensor is near… something. This is typically used to shut off the touchscreen when the phone is next to your ear so that your face doesn’t inadvertently trigger various strange, unwanted events while you think you’re just on a call (something evidently referred to as “cheeking”). The sensor isn’t always on – apparently in some phones it’s disabled in landscape mode, or perhaps it’s only enabled when a call is in session.

A bit of Googling makes it clear that people very often confuse and conflate these two sensors.

Maxim noted that ambient light sensors can typically be thrown off by large amounts of ambient UV and IR light. So they’ve integrated in an optical filter to reject invisible light. This gives the ambient light sensor (a fusion of two actual photodiodes plus the filter) a range roughly like that of the human eye.

They’ve also integrated a third photodiode on the same chip, tuned to respond to the IR light from the pulsed LED – which is external to the chip. They’ve filtered this as well to reject – of all things – DC IR light. That enables the sensor to respond to the IR pulse from the LED without being thrown off by a constant level of ambient IR light.

So what you end up with is their MAX44000 sensor, just announced. You can find more info in their release

 

Smartphones and other similar devices have a number of sensors on them for different purposes. In particular, there are two light-oriented ones that work differently and accomplish different things.

One is an ambient light sensor; it helps decide how bright or dim to make the screen, or perhaps whether your keyboard needs some backlight.

The other is the proximity detector. It works in conjunction with a small IR LED; the sensor measures the reflections of light from that LED to decide whether the sensor is near… something. This is typically used to shut off the touchscreen when the phone is next to your ear so that your face doesn’t inadvertently trigger various strange, unwanted events while you think you’re just on a call (something evidently referred to as “cheeking”). The sensor isn’t always on – apparently in some phones it’s disabled in landscape mode, or perhaps it’s only enabled when a call is in session.

A bit of Googling makes it clear that people very often confuse and conflate these two sensors.

Maxim noted that ambient light sensors can typically be thrown off by large amounts of ambient UV and IR light. So they’ve integrated in an optical filter to reject invisible light. This gives the ambient light sensor (a fusion of two actual photodiodes plus the filter) a range roughly like that of the human eye.

They’ve also integrated a third photodiode on the same chip, tuned to respond to the IR light from the pulsed LED – which is external to the chip. They’ve filtered this as well to reject – of all things – DC IR light. That enables the sensor to respond to the IR pulse from the LED without being thrown off by a constant level of ambient IR light.

So what you end up with is their MAX44000 sensor, just announced. You can find more info in their release

Leave a Reply

featured blogs
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....
Apr 18, 2024
Analog Behavioral Modeling involves creating models that mimic a desired external circuit behavior at a block level rather than simply reproducing individual transistor characteristics. One of the significant benefits of using models is that they reduce the simulation time. V...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTekā€™s design process usually relies on human intuition, but with Cadenceā€™s Optimality Intelligent System Explorer and Clarity 3D Solver, theyā€™ve increased design productivity by 75X. The Optimality Explorerā€™s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Battery-free IoT devices: Enabled by Infineonā€™s NFC Energy-Harvesting
Sponsored by Mouser Electronics and Infineon
Energy harvesting has become more popular than ever before for a wide range of IoT devices. In this episode of Chalk Talk, Amelia Dalton chats with Stathis Zafiriadis from Infineon about the details of Infineonā€™s NFC energy harvesting technology and how you can get started using this technology in your next IoT design. They discuss the connectivity and sensing capabilities of Infineonā€™s NAC1080 and NGC1081 NFC actuation controllers and the applications that would be a great fit for these innovative solutions.
Aug 17, 2023
29,292 views