editor's blog
Subscribe Now

A Mysterious New Roll-On Material… or Two 2

Back when we looked at organic semiconductors, CMOS was a hard thing to do because the standard organic materials were generally p-type. Meaning that organic circuits would consume more power.

A couple of news items have come out recently describing a mysterious material developed by Polyera. The first release was from Norwegian company Thinfilms; they had worked with PARC on developing organic CMOS technology and ultimately announced printed addressable memories that incorporated the Polyera material. “Printable” in this case refers to a so-called “gravure” process, which means it uses a roller (not an inkjet or some other writing means).

The second announcement was from Imec, who announced a higher-efficiency solar cell that incorporated a Polyera “proprietary” material.

I had seen some information on the Thinfilm work even before their Polyera announcement, and I checked in with them. And they didn’t have anything to say until the collaboration with Polyera was officially announced. Once they had outed Polyera, I checked with Polyera to confirm that they had developed an n-type printable material and, if so, what it was.

They confirmed that they did have an n-type material. And as to what it is? It’s this novel material they call “proprietary.” Yeah, they’re being coy. They say that they have “… a few different classes of n-type semiconductor materials, both polymer and small molecule.” They also provided this bit of clueage: “… we develop materials (which are often powders), and then formulate them into inks to enable them to be applied. A given powder can have many different formulations depending on lots of different things (the deposition method, other materials in the device stack, etc.)” In fact, the specific formulation they use for ThinFilm will be exclusive to ThinFilm.

In general, their website lists a number of p-type and n-type materials, mostly as powder, a couple as inkjet, and one that’s “spincoatable.”

However, when I asked whether the solar cell material was the same (more or less), they responded that, “…our OPV and OTFT materials are quite distinct from each other.” And again we’re left wondering about the details. But the work that they did with imec related to a “bulk heterojunction” formulation. This is where n- and p-type materials are mixed together and deposited, and which then separate into distinct p and n regions closely separated. The idea here is that, once a photon has created an electron/hole pair (an exciton), you need a pn junction close by to separate the two so they don’t simply recombine. That’s what these closely-spaced n and p islands try to accomplish. And Polyera is somewhere in that blend.

You can find out more about the ThinFilm announcement here and the imec announcement here.

Leave a Reply

featured blogs
Apr 16, 2024
Learn what IR Drop is, explore the chip design tools and techniques involved in power network analysis, and see how it accelerates the IC design flow.The post Leveraging Early Power Network Analysis to Accelerate Chip Design appeared first on Chip Design....
Apr 16, 2024
In today's semiconductor era, every minute, you always look for the opportunity to enhance your skills and learning growth and want to keep up to date with the technology. This could mean you would also like to get hold of the small concepts behind the complex chip desig...
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Miniaturization Impact on Automotive Products
Sponsored by Mouser Electronics and Molex
In this episode of Chalk Talk, Amelia Dalton and Kirk Ulery from Molex explore the role that miniaturization plays in automotive design innovation. They examine the transformational trends that are leading to smaller and smaller components in automotive designs and how the right connector can make all the difference in your next automotive design.
Sep 25, 2023
25,312 views