editor's blog
Subscribe Now

A Mysterious New Roll-On Material… or Two 2

Back when we looked at organic semiconductors, CMOS was a hard thing to do because the standard organic materials were generally p-type. Meaning that organic circuits would consume more power.

A couple of news items have come out recently describing a mysterious material developed by Polyera. The first release was from Norwegian company Thinfilms; they had worked with PARC on developing organic CMOS technology and ultimately announced printed addressable memories that incorporated the Polyera material. “Printable” in this case refers to a so-called “gravure” process, which means it uses a roller (not an inkjet or some other writing means).

The second announcement was from Imec, who announced a higher-efficiency solar cell that incorporated a Polyera “proprietary” material.

I had seen some information on the Thinfilm work even before their Polyera announcement, and I checked in with them. And they didn’t have anything to say until the collaboration with Polyera was officially announced. Once they had outed Polyera, I checked with Polyera to confirm that they had developed an n-type printable material and, if so, what it was.

They confirmed that they did have an n-type material. And as to what it is? It’s this novel material they call “proprietary.” Yeah, they’re being coy. They say that they have “… a few different classes of n-type semiconductor materials, both polymer and small molecule.” They also provided this bit of clueage: “… we develop materials (which are often powders), and then formulate them into inks to enable them to be applied. A given powder can have many different formulations depending on lots of different things (the deposition method, other materials in the device stack, etc.)” In fact, the specific formulation they use for ThinFilm will be exclusive to ThinFilm.

In general, their website lists a number of p-type and n-type materials, mostly as powder, a couple as inkjet, and one that’s “spincoatable.”

However, when I asked whether the solar cell material was the same (more or less), they responded that, “…our OPV and OTFT materials are quite distinct from each other.” And again we’re left wondering about the details. But the work that they did with imec related to a “bulk heterojunction” formulation. This is where n- and p-type materials are mixed together and deposited, and which then separate into distinct p and n regions closely separated. The idea here is that, once a photon has created an electron/hole pair (an exciton), you need a pn junction close by to separate the two so they don’t simply recombine. That’s what these closely-spaced n and p islands try to accomplish. And Polyera is somewhere in that blend.

You can find out more about the ThinFilm announcement here and the imec announcement here.

Leave a Reply

featured blogs
Sep 21, 2021
Placing component leads accurately as per the datasheet is an important task while creating a package footprint symbol. As the pin pitch goes down, the size and location of the component lead play a... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Accurate Full-System Thermal 3D Analysis

Sponsored by Cadence Design Systems

Designing electronics for the data center challenges designers to minimize and dissipate heat. Electrothermal co-simulation requires system components to be accurately modeled and analyzed. Learn about a true 3D solution that offers full system scalability with 3D analysis accuracy for the entire chip, package, board, and enclosure.

Click here for more information about Celsius Thermal Solver

featured paper

Configure the charge and discharge current separately in a reversible buck/boost regulator

Sponsored by Maxim Integrated (now part of Analog Devices)

The design of a front-end converter can be made less complicated when minimal extra current overhead is required for charging the supercapacitor. This application note explains how to configure the reversible buck/boost converter to achieve a lighter impact on the system during the charging phase. Setting the charge current requirement to the minimum amount keeps the discharge current availability intact.

Click to read more

featured chalk talk

Medical Device Security

Sponsored by Siemens Digital Industries Software

In the new era of connected medical devices, securing embedded systems has become more important than ever. But, there is a lot medical device designers can borrow from current best-practices for embedded security in general. In this episode of Chalk Talk, Amelia Dalton chats with Robert Bates from Mentor about strategies and challenges for securing modern medical devices and systems.

Click here to download the whitepaper, "Medical Device Security: Achieving Regulatory Approval"