editor's blog
Subscribe Now

Conditioning Sensor Signals

Some time back, ZMDI made an announcement about a sensor conditioner they had released. A couple things gave me cause for pause as I looked it over. First was the description of a one-pass calibration process as being unique. The other was the fact that a major component of the advanced sensors you may see presented at conferences, examples of which we covered in a sensor article series earlier this year, is the associated circuitry required to turn a raw sensor output into a reliable, usable signal. I.e., conditioning the signal on the same chip as the sensor.

So I checked in with ZMDI to get their thoughts on both of these topics.

With respect to calibration, all sensors require it, worldly imperfections being what they are. Calibration involves measuring the response of the sensor and then applying corrections that are stored in the sensor; each unit has to be individually calibrated. The question is how you do it.

Some apparently correct using analog techniques; some, including ZMDI, use digital. Some – most of the analog ones in particular – use a multi-pass calibration process to set all of the various parameters because there may be coupling between them, so you need to set some values before measuring and setting others. So you do one measurement pass to acquire one set of values and set a correction. Then you do another pass and set a different parameter. Etc.

The one-pass approach measures all necessary data in one pass, and then offline software – e.g., in a PC – can calculate all of the corrections and program them into the sensor’s EEPROM. This is inherently a faster process than multi-pass.

As far as integrating the conditioner with the sensor is concerned, ZMDI agrees that, in principle, this can certainly be done and would be “a reasonable and mutually beneficial advancement,” although no ongoing projects at ZMDI were identified. They indicated that the kinds of sensors best suited to a combined solution are, of course, those that involve MEMS processes that integrate nicely with CMOS. Those include, in particular, piezo-electric sensors measuring things like pressure and strain as well as those that measure inertia – vibration and acceleration.

Leave a Reply

featured blogs
Feb 8, 2023
Part of the PCIe 6.0 specification, learn how the TEE Device Interface Security Protocol (TDISP) secures I/O virtualization & enables secure key exchange. The post New PCIe TDISP Architecture Secures Device Interfaces with Virtual Servers appeared first on From Silicon ...
Feb 8, 2023
At the recent Chiplet Summit, there was a panel session on the last afternoon titled How to Make Chiplets a Viable Market . The panel was moderated by Meta's Ravi Agarwal, and the panelists were (from left to right in the photo): Travis Lanier of Ventana Micro Systems......
Jan 19, 2023
Are you having problems adjusting your watch strap or swapping out your watch battery? If so, I am the bearer of glad tidings....

featured chalk talk

dsPIC33CH DSCs: Two dsPIC33Cs on a Single Chip

Sponsored by Mouser Electronics and Microchip

In this episode of Chalk Talk, Vijay Bapu from Microchip and Amelia Dalton explore the benefits of dual core digital signal controllers. They discuss the key specifications to keep in mind when it comes to single core and dual core DSCs and how you can reduce your development time, save board space and cost and keep the performance and isolation you need with Microchip’s dsPIC33CH DSCs.

Click here for more information about Microchip Technology dsPIC33CH Dual Core Digital Signal Controllers