editor's blog
Subscribe Now

Conditioning Sensor Signals

Some time back, ZMDI made an announcement about a sensor conditioner they had released. A couple things gave me cause for pause as I looked it over. First was the description of a one-pass calibration process as being unique. The other was the fact that a major component of the advanced sensors you may see presented at conferences, examples of which we covered in a sensor article series earlier this year, is the associated circuitry required to turn a raw sensor output into a reliable, usable signal. I.e., conditioning the signal on the same chip as the sensor.

So I checked in with ZMDI to get their thoughts on both of these topics.

With respect to calibration, all sensors require it, worldly imperfections being what they are. Calibration involves measuring the response of the sensor and then applying corrections that are stored in the sensor; each unit has to be individually calibrated. The question is how you do it.

Some apparently correct using analog techniques; some, including ZMDI, use digital. Some – most of the analog ones in particular – use a multi-pass calibration process to set all of the various parameters because there may be coupling between them, so you need to set some values before measuring and setting others. So you do one measurement pass to acquire one set of values and set a correction. Then you do another pass and set a different parameter. Etc.

The one-pass approach measures all necessary data in one pass, and then offline software – e.g., in a PC – can calculate all of the corrections and program them into the sensor’s EEPROM. This is inherently a faster process than multi-pass.

As far as integrating the conditioner with the sensor is concerned, ZMDI agrees that, in principle, this can certainly be done and would be “a reasonable and mutually beneficial advancement,” although no ongoing projects at ZMDI were identified. They indicated that the kinds of sensors best suited to a combined solution are, of course, those that involve MEMS processes that integrate nicely with CMOS. Those include, in particular, piezo-electric sensors measuring things like pressure and strain as well as those that measure inertia – vibration and acceleration.

Leave a Reply

featured blogs
Jun 12, 2025
We truly do live in a world that would have been considered to be a far-flung science fiction future only a few short decades ago...

featured paper

Shift Left with Calibre Pattern Matching: Trust in design practices but verify early and frequently

Sponsored by Siemens Digital Industries Software

As integrated circuit (IC) designs become increasingly complex, early-stage verification is crucial to ensure productivity and quality in design processes. The "shift left" verification approach, enabled by Siemens’ Calibre nmPlatform, helps IC design teams to identify and resolve critical issues much earlier in the design cycle.

Click to read more

featured chalk talk

Reducing cost of ownership of brushless actuators using Edge AI
In this episode of Chalk Talk, Louis Gobin, Ryan MetIvier, Roberto Sannino from STMicroelectronics join Amelia Dalton to chat about how sensing and actuation data be combined in predictive maintenance applications, the benefits that the STMicroelectronics Smart Actuator Development Platform can bring to automation systems, and how you can take advantage of this development platform for your next design.
Jun 11, 2025
1,344 views