editor's blog
Subscribe Now

Conditioning Sensor Signals

Some time back, ZMDI made an announcement about a sensor conditioner they had released. A couple things gave me cause for pause as I looked it over. First was the description of a one-pass calibration process as being unique. The other was the fact that a major component of the advanced sensors you may see presented at conferences, examples of which we covered in a sensor article series earlier this year, is the associated circuitry required to turn a raw sensor output into a reliable, usable signal. I.e., conditioning the signal on the same chip as the sensor.

So I checked in with ZMDI to get their thoughts on both of these topics.

With respect to calibration, all sensors require it, worldly imperfections being what they are. Calibration involves measuring the response of the sensor and then applying corrections that are stored in the sensor; each unit has to be individually calibrated. The question is how you do it.

Some apparently correct using analog techniques; some, including ZMDI, use digital. Some – most of the analog ones in particular – use a multi-pass calibration process to set all of the various parameters because there may be coupling between them, so you need to set some values before measuring and setting others. So you do one measurement pass to acquire one set of values and set a correction. Then you do another pass and set a different parameter. Etc.

The one-pass approach measures all necessary data in one pass, and then offline software – e.g., in a PC – can calculate all of the corrections and program them into the sensor’s EEPROM. This is inherently a faster process than multi-pass.

As far as integrating the conditioner with the sensor is concerned, ZMDI agrees that, in principle, this can certainly be done and would be “a reasonable and mutually beneficial advancement,” although no ongoing projects at ZMDI were identified. They indicated that the kinds of sensors best suited to a combined solution are, of course, those that involve MEMS processes that integrate nicely with CMOS. Those include, in particular, piezo-electric sensors measuring things like pressure and strain as well as those that measure inertia – vibration and acceleration.

Leave a Reply

featured blogs
Oct 4, 2022
We share 6 key advantages of cloud-based IC hardware design tools, including enhanced scalability, security, and access to AI-enabled EDA tools. The post 6 Reasons to Leverage IC Hardware Development in the Cloud appeared first on From Silicon To Software....
Oct 4, 2022
Anyone designing a data center faces complex thermal management challenges . Yes, there's a large amount of electrical power required, but the other side of that coin is that almost all the power gets turned into heat, putting a tremendous strain on the airflow and cooling sy...
Sep 30, 2022
When I wrote my book 'Bebop to the Boolean Boogie,' it was certainly not my intention to lead 6-year-old boys astray....

featured video

PCIe Gen5 x16 Running on the Achronix VectorPath Accelerator Card

Sponsored by Achronix

In this demo, Achronix engineers show the VectorPath Accelerator Card successfully linking up to a PCIe Gen5 x16 host and write data to and read data from GDDR6 memory. The VectorPath accelerator card featuring the Speedster7t FPGA is one of the first FPGAs that can natively support this interface within its PCIe subsystem. Speedster7t FPGAs offer a revolutionary new architecture that Achronix developed to address the highest performance data acceleration challenges.

Click here for more information about the VectorPath Accelerator Card

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

ROHM Automotive LED Driver IC

Sponsored by Mouser Electronics and ROHM Semiconductor

There has been a lot of innovation in the world of automotive designs over the last several years and this innovation also includes the LED lights at the rear of our vehicles. In this episode of Chalk Talk, Amelia Dalton chats with Nick Ikuta from ROHM Semiconductor about ROHM’s automotive LED driver ICs. They take a closer look at why their four channel outputs, energy sharing function, and integrated protection functions make these new driver ICs a great solution for rear lamp design.

Click here for more information about ROHM Semiconductor Automotive Lighting Solutions