industry news
Subscribe Now

ZMDI 14-Bit Capacitive Sensor Conditioning IC Raises Bar on Accuracy, Linearity, and Temperature for Pressure Sensors

  • ZSSC3123 low power capacitive sensor conditioning IC enables first-pass calibration
  • Delivers 14-bit resolution and 0.25 % accuracy
  • Low power consumption at 60uA with sleep mode to lower to <1uA
  • Available today at 2.65 EUR, or USD 3.71, for 1kpc

Dresden, Germany — October 5, 2011 – ZMD AG (ZMDI), a global supplier of energy-efficient analog and mixed-signal solutions for automotive, industrial, and medical applications, has expanded its family of capacitive sensor signal conditioning devices with the wide-dynamic-range ZSSC3123 integrated circuit (IC).  The chip delivers 14-bit resolution and 0.25 % accuracy over a wide range of sensor capacitances and temperatures. Target applications include low power battery driven sensor applications, sensors for humidity, weight scales, load and compression sensing, as well as tension control.

Capacitive sensors are often favored for their small size and lower power consumption. The ZSSC3123, designed for low-power operation, complements these features and provides to designers an optimal solution for their system designs. The device is particularly suited for MEMS-based sensor elements, such as pressure sensors for hydraulic control systems, humidity sensors, and liquid level gauges. 

“Responding to sensor system designer needs, we have developed a digital technique to correct both first-order and third-order nonlinearity errors that were difficult or impossible to correct with a pure analog signal path,” stated Steve Ramdin, Product Manager at ZMDI. “Third-order correction is especially useful in humidity and pressure applications, but it can correct for sensor imperfections in almost any situation.”

The ZSSC3123 connects to microcontrollers but can also be utilized in stand-alone designs for transducer and switch applications.  The ZSSC3123 features an operating current as low as 60uA over the entire voltage range of 2.3V to 5.5V.  A built-in sleep mode lowers the current consumption to <1uA for temperatures up to 85°C.

The ZSSC3123 can be configured to interface with capacitive sensors from 0.5 to 260 pF, with sensitivity as low as 125 atto-Farads (aF) per digital bit. The part can be used in both single- and differential-input sensor configurations. The device offers a full 14-bit resolution for compensation of sensor offset, sensitivity and temperature. 

All calibration is digital and completed in one pass, eliminating the cost of laser trimming, and speeds up calibration of sensor modules in production. Programming and single-pass calibration of the capacitive sensor and the ZSSC3123 is accomplished through a standard PC environment using the ZSSC3123 kit and development tools. The kit includes a TSSOP14, development board, USB cable and calibration software.

At the standard supply voltage of 2.3 to 5.5 V, the device is accurate to 0.25 % over the -20 to +85°C range, and 0.5 % from -40 to +125°C. The ZSSC3123 part provides I2C and SPI interfaces as well as PDM or alarm outputs.

The ZSSC3123 is available in production. Unit prices start at 2.85 EUR, or USD 3.82, in volumes of 1k devices.  More information is available at www.ZMDI.com.

About ZMDI

Zentrum Mikroelektronik Dresden AG (ZMDI) is a premier supplier of innovative energy efficient analog and mixed-signal semiconductors for the automotive, mobile medical, industrial automation, and consumer markets. The Company’s application-specific standard products (ASSPs) and application-specific integrated circuits (ASICs) are known for their robust, cost-effective performance in demanding environments characterized by high temperature, high voltage, and the need for ultra-low power. Headquartered in Dresden, Germany, ZMDI has 280 employees worldwide and serves customers from its offices in Dresden, Stuttgart, Germany; Milan, Italy; Pocatello, ID, Melville, NY; Tokyo, Japan, Seoul, Korea and Taipei, Taiwan. ZMDI has design centres in Dresden, Stuttgart, Munich, Germany; Varna, Bulgaria and Madison, Wisconsin. See more at www.zmdi.com.

Leave a Reply

featured blogs
Apr 23, 2024
Do you think you are spending too much time fine-tuning your SKILL code? As a SKILL coder, you must be aware that producing bug-free and efficient code requires a lot of effort and analysis. But don't worry, there's good news! The Cadence Virtuoso Studio platform ha...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Maximizing High Power Density and Efficiency in EV-Charging Applications
Sponsored by Mouser Electronics and Infineon
In this episode of Chalk Talk, Amelia Dalton and Daniel Dalpiaz from Infineon talk about trends in the greater electrical vehicle charging landscape, typical block diagram components, and tradeoffs between discrete devices versus power modules. They also discuss choices between IGBT’s and Silicon Carbide, the advantages of advanced packaging techniques in both power discrete and power module solutions, and how reliability is increasingly important due to demands for more charging cycles per day.
Dec 18, 2023
17,407 views