editor's blog
Subscribe Now

Describing User-Defined Faults

In today’s article on cell-aware fault modeling, we described how specific layout-dependent faults can be accounted for in the test suite, increasing the test coverage beyond what stuck-at modeling provides and yet keeping the vector count down below what gate-exhaustive modeling would require.

But there has to be some way of defining these specific “user-defined” faults so that the test generation program can include them in the test suite.

Mentor devised their so-called “User-Defined Fault Model”, or UDFM, language to handle this. It’s a human-readable and -writable format, and you can use it to define both static and transition faults. This allows you to describe specific custom faults manually if you wish, although, as described in the article, it would be written out automatically by the tools.

As an example, the following would define the four possible alternative tests for the static fault caused by the low-resistance bridge example in the article:

Fault “Bridge-R4” {

       Test {StaticFault “Z”=0; Condition “S0”=0,”S1”=0,”D0”=0,”D1”=-,”D2”=1}

       Test {StaticFault “Z”=0; Condition “S0”=1,”S1”=0,”D0”=-,”D1”=0,”D2”=1}

       Test {StaticFault “Z”=0; Condition “S0”=0,”S1”=1,”D0”=1,”D1”=-,”D2”=0}

       Test {StaticFault “Z”=0; Condition “S0”=1,”S1”=1,”D0”=-,”D1”=1,”D2”=0}

}

Leave a Reply

featured blogs
Oct 20, 2020
In 2020, mobile traffic has skyrocketed everywhere as our planet battles a pandemic. Samtec.com saw nearly double the mobile traffic in the first two quarters than it normally sees. While these levels have dropped off from their peaks in the spring, they have not returned to ...
Oct 20, 2020
Voltus TM IC Power Integrity Solution is a power integrity and analysis signoff solution that is integrated with the full suite of design implementation and signoff tools of Cadence to deliver the... [[ Click on the title to access the full blog on the Cadence Community site...
Oct 19, 2020
Have you ever wondered if there may another world hidden behind the facade of the one we know and love? If so, would you like to go there for a visit?...
Oct 16, 2020
[From the last episode: We put together many of the ideas we'€™ve been describing to show the basics of how in-memory compute works.] I'€™m going to take a sec for some commentary before we continue with the last few steps of in-memory compute. The whole point of this web...

Featured Paper

Four Ways to Improve Verification Performance and Throughput

Sponsored by Cadence Design Systems

Learn how to address your growing verification needs. Hear how Cadence Xcelium™ Logic Simulation improves your design’s performance and throughput: improving single-core engine performance, leveraging multi-core simulation, new features, and machine learning-optimized regression technology for up to 5X faster regressions.

Click here for more information about Xcelium Logic Simulation

featured Paper

New package technology improves EMI and thermal performance with smaller solution size

Sponsored by Texas Instruments

Power supply designers have a new tool in their effort to achieve balance between efficiency, size, and thermal performance with DC/DC power modules. The Enhanced HotRod™ QFN package technology from Texas Instruments enables engineers to address design challenges with an easy-to-use footprint that resembles a standard QFN. This new package type combines the advantages of flip-chip-on-lead with the improved thermal performance presented by a large thermal die attach pad (DAP).

Click here to download the whitepaper

Featured Chalk Talk

Microchip PIC-IoT WG Development Board

Sponsored by Mouser Electronics and Microchip

In getting your IoT design to market, you need to consider scalability into manufacturing, ease of use, cloud connectivity, security, and a host of other critical issues. In this episode of Chalk Talk, Amelia Dalton sits down with Jule Ann Baker of Microchip to chat about these issues, and how the Microchip PIC-IoT WG development board can help you overcome them.

Click here for more information about Microchip Technology PIC-IoT WG Development Board (AC164164)