editor's blog
Subscribe Now

Describing User-Defined Faults

In today’s article on cell-aware fault modeling, we described how specific layout-dependent faults can be accounted for in the test suite, increasing the test coverage beyond what stuck-at modeling provides and yet keeping the vector count down below what gate-exhaustive modeling would require.

But there has to be some way of defining these specific “user-defined” faults so that the test generation program can include them in the test suite.

Mentor devised their so-called “User-Defined Fault Model”, or UDFM, language to handle this. It’s a human-readable and -writable format, and you can use it to define both static and transition faults. This allows you to describe specific custom faults manually if you wish, although, as described in the article, it would be written out automatically by the tools.

As an example, the following would define the four possible alternative tests for the static fault caused by the low-resistance bridge example in the article:

Fault “Bridge-R4” {

       Test {StaticFault “Z”=0; Condition “S0”=0,”S1”=0,”D0”=0,”D1”=-,”D2”=1}

       Test {StaticFault “Z”=0; Condition “S0”=1,”S1”=0,”D0”=-,”D1”=0,”D2”=1}

       Test {StaticFault “Z”=0; Condition “S0”=0,”S1”=1,”D0”=1,”D1”=-,”D2”=0}

       Test {StaticFault “Z”=0; Condition “S0”=1,”S1”=1,”D0”=-,”D1”=1,”D2”=0}

}

Leave a Reply

featured blogs
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 29, 2022
Smart manufacturing '“ the use of nascent technology within the industrial Internet of things (IIoT) to address traditional manufacturing challenges '“ is leading a supply chain revolution, resulting in smart, connected, and intelligent environments, capable of self-operati...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Maximizing Power Savings During Chip Implementation with Dynamic Refresh of Vectors

Sponsored by Synopsys

Drive power optimization with actual workloads and continually refresh vectors at each step of chip implementation for maximum power savings.

Learn more about Energy-Efficient SoC Solutions

featured paper

How SHP in plastic packaging addresses 3 key space application design challenges

Sponsored by Texas Instruments

TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.

Click to read more

featured chalk talk

EdgeLock® Secure Element & Secure Authenticator

Sponsored by Mouser Electronics and NXP Semiconductors

Today’s IoT designs demand comprehensive security implementation, but incorporating a robust security solution in your design can be a complicated and time-consuming process. In this episode of Chalk Talk, Amelia Dalton and Antje Schutz from NXP explore NXP’s EdgeLock Secure Element and Secure Authenticator Solution. They examine how this flexible, future-proof and easy to deploy solution can be a great fit for a variety of IoT designs.

Click here for more information about NXP Semiconductors EdgeLock® SE050 Plug & Trust Secure Element Family