editor's blog
Subscribe Now

Virtual Platforms for a Non-FPGA

Xilinx has a new challenge on their hands. It’s called “software.” And at ARM TechCon, they announced their software enablement initiative for Zynq.

Of course, this is the same challenge any SoC project has. And SoC designers have a variety of tools to help with this, from virtual platforms to emulators. These allow software development to get up and running before the actual silicon is available.

What’s new is that Xilinx has their spiffy new Zynq family featuring the ARM Cortex A9 MPcore – one or more copies. And it’s just itching to run some software. And so they should naturally be able to take advantage of the infrastructure that’s there for SoCs.

Except for one thing: SoC tools cost money. FPGA tools don’t.

OK, technically, they do cost money… but no one pays. (What? You actually paid? Hahahahahaha…)

So… getting FPGA users to pay SoC bucks for tools is a tough sell.

Instead, Xilinx announced two things it’s trying in order to help out.

On one front, they’re actually trying not to market Zynq so much as an FPGA: instead, it’s a processor platform with some configurable logic on there. Nope, not an FPGA at all.

On the other front, amongst other components of the toolchain, they’ve made three flavors of virtual platform available, in conjunction with Cadence and Imperas.

For the thrifty open-source types, they’ve got a QEMU offering. The next rung up is for software developers getting their software to work on a fixed configuration. They call this the Zynq-7000 EPP – Software Developer Bundle.

The top-of-the-line is for those tasked with developing the platform model that those software developers will use: This is the Zynq-7000 EPP – System Creator Bundle.

The difference is that those last guys can play with the platform architecture, adding and removing models. The mid-range bundle has a fixed configuration; you can only develop software on it.

Cadence involvement comes through the virtual platform itself and most of the peripheral models. The A9 model comes via Imperas (a fact not public as of the ARM TechCon discussion, but subsequently revealed).

You can find more information on the Xilinx site

Leave a Reply

featured blogs
Jul 12, 2024
I'm having olfactory flashbacks to the strangely satisfying scents found in machine shops. I love the smell of hot oil in the morning....

featured video

Larsen & Toubro Builds Data Centers with Effective Cooling Using Cadence Reality DC Design

Sponsored by Cadence Design Systems

Larsen & Toubro built the world’s largest FIFA stadium in Qatar, the world’s tallest statue, and one of the world’s most sophisticated cricket stadiums. Their latest business venture? Designing data centers. Since IT equipment in data centers generates a lot of heat, it’s important to have an efficient and effective cooling system. Learn why, Larsen & Toubro use Cadence Reality DC Design Software for simulation and analysis of the cooling system.

Click here for more information about Cadence Multiphysics System Analysis

featured paper

DNA of a Modern Mid-Range FPGA

Sponsored by Intel

While it is tempting to classify FPGAs simply based on logic capacity, modern FPGAs are alterable systems on chips with a wide variety of features and resources. In this blog we look closer at requirements of the mid-range segment of the FPGA industry.

Click here to read DNA of a Modern Mid-Range FPGA - Intel Community

featured chalk talk

FlyOver® Technology: Twinax FlyOver® System for Next Gen Speeds -- Samtec and Mouser
Sponsored by Mouser Electronics and Samtec
In this episode of Chalk Talk, Amelia Dalton and Matthew Burns from Samtec investigate the challenges of routing high speed data over lossy PCBs. They also discuss the benefits that Samtec’s Flyover® cable assembly systems bring to data center and embedded designs and how Samtec is furthering innovation with their high speed interconnect solutions. 
Apr 15, 2024
11,859 views