editor's blog
Subscribe Now

Virtual Platforms for a Non-FPGA

Xilinx has a new challenge on their hands. It’s called “software.” And at ARM TechCon, they announced their software enablement initiative for Zynq.

Of course, this is the same challenge any SoC project has. And SoC designers have a variety of tools to help with this, from virtual platforms to emulators. These allow software development to get up and running before the actual silicon is available.

What’s new is that Xilinx has their spiffy new Zynq family featuring the ARM Cortex A9 MPcore – one or more copies. And it’s just itching to run some software. And so they should naturally be able to take advantage of the infrastructure that’s there for SoCs.

Except for one thing: SoC tools cost money. FPGA tools don’t.

OK, technically, they do cost money… but no one pays. (What? You actually paid? Hahahahahaha…)

So… getting FPGA users to pay SoC bucks for tools is a tough sell.

Instead, Xilinx announced two things it’s trying in order to help out.

On one front, they’re actually trying not to market Zynq so much as an FPGA: instead, it’s a processor platform with some configurable logic on there. Nope, not an FPGA at all.

On the other front, amongst other components of the toolchain, they’ve made three flavors of virtual platform available, in conjunction with Cadence and Imperas.

For the thrifty open-source types, they’ve got a QEMU offering. The next rung up is for software developers getting their software to work on a fixed configuration. They call this the Zynq-7000 EPP – Software Developer Bundle.

The top-of-the-line is for those tasked with developing the platform model that those software developers will use: This is the Zynq-7000 EPP – System Creator Bundle.

The difference is that those last guys can play with the platform architecture, adding and removing models. The mid-range bundle has a fixed configuration; you can only develop software on it.

Cadence involvement comes through the virtual platform itself and most of the peripheral models. The A9 model comes via Imperas (a fact not public as of the ARM TechCon discussion, but subsequently revealed).

You can find more information on the Xilinx site

Leave a Reply

featured blogs
Apr 14, 2021
Hybrid Cloud architecture enables innovation in AI chip design; learn how our partnership with IBM combines the best in EDA & HPC to improve AI performance. The post Synopsys and IBM Research: Driving Real Progress in Large-Scale AI Silicon and Implementing a Hybrid Clou...
Apr 13, 2021
The human brain is very good at understanding the world around us.  An everyday example can be found when driving a car.  An experienced driver will be able to judge how large their car is, and how close they can approach an obstacle.  The driver does not need ...
Apr 13, 2021
If a picture is worth a thousand words, a video tells you the entire story. Cadence's subsystem SoC silicon for PCI Express (PCIe) 5.0 demo video shows you how we put together the latest... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Apr 12, 2021
The Semiconductor Ecosystem- It is the definition of '€œHigh Tech'€, but it isn'€™t just about… The post Calibre and the Semiconductor Ecosystem appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

From Chips to Ships, Solve Them All With HFSS

Sponsored by Ansys

There are virtually no limits to the design challenges that can be solved with Ansys HFSS and the new HFSS Mesh Fusion technology! Check out this blog to know what the latest innovation in HFSS 2021 can do for you.

Click here to read the blog post

Featured Chalk Talk

TensorFlow to RTL with High-Level Synthesis

Sponsored by Cadence Design Systems

Bridging the gap from the AI and data science world to the RTL and hardware design world can be challenging. High-level synthesis (HLS) can provide a mechanism to get from AI frameworks like TensorFlow into synthesizable RTL, enabling the development of high-performance inference architectures. In this episode of Chalk Talk, Amelia Dalton chats with Dave Apte of Cadence Design Systems about doing AI design with HLS.

More information