editor's blog
Subscribe Now

ARM’s Top Three Cellular Trends

At ARM’s recent TechCon event, I heard from James Bruce, their lead mobile strategist, who gave his views on the three trends he sees underway on the mobile front.

The first is the continued evolution of the smartphone; no surprise there. These are the machines that are expected to replace your laptop someday. At around $600, they’ll focus on features and performance. (And, addressing my kvetch comment following Jim’s article at the end of that link, yes, evidently docking stations are being prepared. He wasn’t able to share any names. I’m just glad I won’t be forced to thumb future articles on a phone.)

The second is the firming up of an entry-level smartphone category, in the $80 range. What will the user give up for that $520? Well, most of the costs are in the screen, the sensors, and in the technology required to make a phone super thin and super low-power. So this category would do much of what the super-smartphone would do, only slower, with less memory, fewer sensors, a larger battery, and lower-quality mechanics. He describes it as being like a 2009-10 smartphone, only cheaper.

The third is the emergence of LTE (long-term evolution) for increased capacity (roughly double) and consistent data rates. It also brings MIMO (multiple in/out) technology to improve reception in harsh urban environments.

Of course, there’s inconsistency in marketing LTE as a 3G or 4G technology. In the US, it’s called 4G because, well, because we like to market things as better than they are whenever we can get away with it. In Europe, on the other hand, they license spectrum per technology. So providers there are staying on the 3G bandwagon for as long as possible. When they move to 4G, they’ll have to pay new licensing fees.

For the record, LTE/Advanced is, according to James, truly a 4G technology.

After that? Well, bandwidth demand is doubling every couple years. Transmission technology can only do so much to keep up with that. Using more and smaller cells – down to the level of femtocells – will be a necessary complement to keep boosting overall system capacity.

Leave a Reply

featured blogs
May 25, 2022
The Team RF "μWaveRiders" blog series is a showcase for Cadence AWR RF products. Monthly topics will vary between Cadence AWR Design Environment release highlights, feature videos, Cadence... ...
May 25, 2022
Explore the world of point-of-care (POC) anatomical 3D printing and learn how our AI-enabled Simpleware software eliminates manual segmentation & landmarking. The post How Synopsys Point-of-Care 3D Printing Helps Clinicians and Patients appeared first on From Silicon To...
May 25, 2022
There are so many cool STEM (science, technology, engineering, and math) toys available these days, and I want them all!...
May 24, 2022
By Neel Natekar Radio frequency (RF) circuitry is an essential component of many of the critical applications we now rely… ...

featured video

EdgeQ Creates Big Connections with a Small Chip

Sponsored by Cadence Design Systems

Find out how EdgeQ delivered the world’s first 5G base station on a chip using Cadence’s logic simulation, digital implementation, timing and power signoff, synthesis, and physical verification signoff tools.

Click here for more information

featured paper

Reduce EV cost and improve drive range by integrating powertrain systems

Sponsored by Texas Instruments

When you can create automotive applications that do more with fewer parts, you’ll reduce both weight and cost and improve reliability. That’s the idea behind integrating electric vehicle (EV) and hybrid electric vehicle (HEV) designs.

Click to read more

featured chalk talk

ROHM Automotive LED Driver IC

Sponsored by Mouser Electronics and ROHM Semiconductor

There has been a lot of innovation in the world of automotive designs over the last several years and this innovation also includes the LED lights at the rear of our vehicles. In this episode of Chalk Talk, Amelia Dalton chats with Nick Ikuta from ROHM Semiconductor about ROHM’s automotive LED driver ICs. They take a closer look at why their four channel outputs, energy sharing function, and integrated protection functions make these new driver ICs a great solution for rear lamp design.

Click here for more information about ROHM Semiconductor Automotive Lighting Solutions