editor's blog
Subscribe Now

Power Contributors

At the recent Si2 conference, there was an interesting presentation by IBM’s David Hathaway on what is hoped to be a better way of approaching power modeling at the technology level.

He said that power modeling can be approached differently from delay modeling. With delay, there are numerous effects that combine in complex, non-linear ways, and so a full characterization of each cell is necessary. But with power, because interpolation is risky, many more points are needed, making full characterization a really time-consuming chore.

The good news, he proposed, is that the elements contributing to power can be separated out as more or less orthogonal to each other. Specific power contributors can be isolated, and then each cell can be defined in terms of its contributors. Only the contributors have to be characterized (tens of tests rather than hundreds), and then they can be summed cell by cell.

In an experiment to test this theory out, they compared the calculated value with full-up actual values. 95% of the simulations that would have normally been needed were eliminated, and the average error was 0.073%, with the worst-case error being 3.64%.

There’s more work to be done both at the dynamic and leakage level, but it felt like there’s some promise to this approach, with the potential of making it easier to create new technology models.

Leave a Reply

featured blogs
Jul 6, 2022
With the DRAM fabrication advancing from 1x to 1y to 1z and further to 1a, 1b and 1c nodes along with the DRAM device speeds going up to 8533 for Lpddr5/8800 for DDR5, Data integrity is becoming a... ...
Jul 6, 2022
Design Automation Conference (DAC) 2022 is almost here! Explore EDA and cloud design tools, autonomous systems, AI, and more with our experts in San Francisco. The post DAC 2022: A Glimpse into the World of Design Automation from the Cloud to Cryogenic Computing appeared fir...
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys USB4 PHY Silicon Correlation with Keysight ADS Simulation

Sponsored by Synopsys

This video features Synopsys USB4 PHY IP showing silicon correlation with IBIS-AMI simulation using Keysight PathWave ADS.

Learn More

featured paper

3 key considerations for your next-generation HMI design

Sponsored by Texas Instruments

Human-Machine Interface (HMI) designs are evolving. Learn about three key design considerations for next-generation HMI and find out how low-cost edge AI, power-efficient processing and advanced display capabilities are paving the way for new human-machine interfaces that are smart, easily deployable, and interactive.

Click to read more

featured chalk talk

Faster, More Predictable Path to Multi-Chiplet Design Closure

Sponsored by Cadence Design Systems

The challenges for 3D IC design are greater than standard chip design - but they are not insurmountable. In this episode of Chalk Talk, Amelia Dalton chats with Vinay Patwardhan from Cadence Design Systems about the variety of challenges faced by 3D IC designers today and how Cadence’s integrated, high-capacity Integrity 3D IC Platform, with its 3D design planning and implementation cockpit, flow manager and co-design capabilities will not only help you with your next 3D IC design.

Click here for more information about Integrity 3D-IC Platform from Cadence Design Systems