editor's blog
Subscribe Now

Power Contributors

At the recent Si2 conference, there was an interesting presentation by IBM’s David Hathaway on what is hoped to be a better way of approaching power modeling at the technology level.

He said that power modeling can be approached differently from delay modeling. With delay, there are numerous effects that combine in complex, non-linear ways, and so a full characterization of each cell is necessary. But with power, because interpolation is risky, many more points are needed, making full characterization a really time-consuming chore.

The good news, he proposed, is that the elements contributing to power can be separated out as more or less orthogonal to each other. Specific power contributors can be isolated, and then each cell can be defined in terms of its contributors. Only the contributors have to be characterized (tens of tests rather than hundreds), and then they can be summed cell by cell.

In an experiment to test this theory out, they compared the calculated value with full-up actual values. 95% of the simulations that would have normally been needed were eliminated, and the average error was 0.073%, with the worst-case error being 3.64%.

There’s more work to be done both at the dynamic and leakage level, but it felt like there’s some promise to this approach, with the potential of making it easier to create new technology models.

Leave a Reply

featured blogs
Apr 17, 2024
The semiconductor industry thrives on innovation, and at the heart of this progress lies Electronic Design Automation (EDA). EDA tools allow engineers to design and evaluate chips, before manufacturing, a data-intensive process. It would not be wrong to say that data is the l...
Apr 16, 2024
Learn what IR Drop is, explore the chip design tools and techniques involved in power network analysis, and see how it accelerates the IC design flow.The post Leveraging Early Power Network Analysis to Accelerate Chip Design appeared first on Chip Design....
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

ROHM's 4th Generation SiC MOSFET
In this episode of Chalk Talk, Amelia Dalton and Ming Su from ROHM Semiconductor explore the benefits of the ROHM’s 4th generation of silicon carbide MOSFET. They investigate the switching performance, capacitance improvement, and ease of use of this new silicon carbide MOSFET family.
Jun 26, 2023
33,620 views