editor's blog
Subscribe Now

Bridging Digital and Custom Domains

Digital and custom (mostly meaning analog) design domains have remained stubbornly separate for a long time. It used to make sense: digital flows were used for logic chips; custom flows were used either for hand-crafted processors, for highly-repetitive circuits like FPGAs and memories, or for analog chips. You designed an entire chip with one flow, so the fact that there were two domains didn’t matter.

The difference in flows more or less comes down to one word: synthesis. Logic can be synthesized and auto-placed and routed; custom circuits can’t. Or, by design, aren’t.

But chips aren’t so neatly segregated now. Analog chips now need digital control. Large SoC chips need analog content. But the two flows don’t really work together well. You end up having to do two partial designs and then go back and forth importing and exporting data. Problem is, in addition to the basic design data, there is lots of metadata: constraints and manual edits to placement and routing. These tend to get lost in the transfer.

So Synopsys recently announced an improvement to this process. It provides for a seamless, lossless transfer of information back and forth between domains. That ensures that all the metadata is included in the import/exports.

What it doesn’t do is combine the domains into one. Synopsys says that the two design styles are different enough to warrant different optimized databases. (Something tells me that, given demand, it would be possible to design an optimized combined database schema, although it might be a lot of work to create and migrate…)

But here’s what I think the real issue is: the digital side is on a proprietary database – useful for keeping customers in the Synopsys camp. The custom side is in an open database: useful for peeling away Cadence users. It will probably take more than ease-of-use to trump those strategic goals…

More info in their press release

Leave a Reply

featured blogs
Apr 12, 2024
Like any software application or electronic gadget, software updates are crucial for Cadence OrCAD X and Allegro X applications as well. These software updates, often referred to as hotfixes, include support for new features and critical bug fixes made available to the users ...
Apr 11, 2024
See how Achronix used our physical verification tools to accelerate the SoC design and verification flow, boosting chip design productivity w/ cloud-based EDA.The post Achronix Achieves 5X Faster Physical Verification for Full SoC Within Budget with Synopsys Cloud appeared ...
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Shift Left with Calibre
In this episode of Chalk Talk, Amelia Dalton and David Abercrombie from Siemens investigate the details of Calibre’s shift-left strategy. They take a closer look at how the tools and techniques in this design tool suite can help reduce signoff iterations and time to tapeout while also increasing design quality.
Nov 27, 2023
18,540 views