editor's blog
Subscribe Now

Multicore and Concurrency

In this week’s multicore automation article, we talked about multicore and we talked about concurrency. It’s easy to conflate these two concepts, so an important distinction should be drawn. The terminology isn’t particularly precise here, but the notions are.

“Multicore” typically refers to a computing platform. The number associated with it is the number of cores available for running a program. This number is completely independent of the program being run (although for embedded systems, it may have been designed with a specific program in mind).

“Concurrency” is a property of a program. It reflects how easy it is to pull apart and parallelize. It has nothing to do with a computing platform. A given algorithm can be designed with more or less opportunity for concurrency.

In a perfect world, the multicore structure matches the concurrency of the program being run. In the real world, a given program may need to be made to work on a number of different platforms. The more concurrency opportunities there are in a program, the more it can be optimized for different multicore platforms. If it’s really only possible to split a program in two, then a four-core platform will be no better than a two-core platform.

For this reason, it can be beneficial to optimize your program for as much concurrency as possible so that it can be partitioned in many different ways over many different platforms.

Leave a Reply

featured blogs
Jan 22, 2021
Amidst an ongoing worldwide pandemic, Samtec continues to connect with our communities. As a digital technology company, we understand the challenges and how uncertain times have been for everyone. In early 2020, Samtec Cares suspended its normal grant cycle and concentrated ...
Jan 22, 2021
I was recently introduced to the concept of a tray that quickly and easily attaches to your car'€™s steering wheel (not while you are driving, of course). What a good idea!...
Jan 22, 2021
This is my second post about this year's CES. The first was Consumer Electronics Show 2021: GM, Intel . AMD The second day of CES opened with Lisa Su, AMD's CEO, presenting. AMD announced new... [[ Click on the title to access the full blog on the Cadence Community...
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...

featured paper

Common Design Pitfalls When Designing With Hall 2D Sensors And How To Avoid Them

Sponsored by Texas Instruments

This article discusses three widespread application issues in industrial and automotive end equipment – rotary encoding, in-plane magnetic sensing, and safety-critical – that can be solved more efficiently using devices with new features and higher performance. We will discuss in which end products these applications can be found and also provide a comparison with our traditional digital Hall-effect sensors showing how the new releases complement our existing portfolio.

Click here to download the whitepaper

featured chalk talk

High-Performance Test to 70 GHz

Sponsored by Samtec

Today’s high-speed serial interfaces with PAM4 present serious challenges when it comes to test. Eval boards can end up huge, and signal integrity of the test point system is always a concern. In this episode of Chalk Talk, Amelia Dalton chats with Matthew Burns of Samtec about the Bullseye test point system, which can maintain signal integrity up to 70 GHz with a compact test point footprint.

Click here for more information about Samtec’s Bulls Eye® Test System