editor's blog
Subscribe Now

Multicore and Concurrency

In this week’s multicore automation article, we talked about multicore and we talked about concurrency. It’s easy to conflate these two concepts, so an important distinction should be drawn. The terminology isn’t particularly precise here, but the notions are.

“Multicore” typically refers to a computing platform. The number associated with it is the number of cores available for running a program. This number is completely independent of the program being run (although for embedded systems, it may have been designed with a specific program in mind).

“Concurrency” is a property of a program. It reflects how easy it is to pull apart and parallelize. It has nothing to do with a computing platform. A given algorithm can be designed with more or less opportunity for concurrency.

In a perfect world, the multicore structure matches the concurrency of the program being run. In the real world, a given program may need to be made to work on a number of different platforms. The more concurrency opportunities there are in a program, the more it can be optimized for different multicore platforms. If it’s really only possible to split a program in two, then a four-core platform will be no better than a two-core platform.

For this reason, it can be beneficial to optimize your program for as much concurrency as possible so that it can be partitioned in many different ways over many different platforms.

Leave a Reply

featured blogs
Jul 1, 2022
We all look for 100% perfection and want to turn our dreams (expectations) into reality as far as we can. Are you also looking for a magic wand to turn expectation into reality? The story applies to... ...
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys 112G Ethernet IP Interoperating with Optical Components & Equalizing E-O-E Link

Sponsored by Synopsys

This OFC 2022 demo features the Synopsys 112G Ethernet IP directly equalizing electrical-optical-electrical (E-O-E) channel and supporting retimer-free CEI-112G linear drive for low-power applications.

Learn More

featured paper

An Engineer's Guide to Designing with Precision Amplifiers

Sponsored by Texas Instruments

Engineers face many challenges when designing analog circuits. This e-book covers common topics related to these products, including operational amplifier (op amp) specifications and printed circuit board layout issues, instrumentation amplifier linear operating regions, and electrical overstress.

Click to read more

featured chalk talk

NEUTRIK Fiber Optic Solutions

Sponsored by Mouser Electronics and Neutrik

The advantages and benefits of fiber optics are a mile long…but how can you design with them? How can you clean them? How do you repair them? Need a bit of a refresher? In this episode of Chalk Talk, Amelia Dalton chats with David Kuklinski from Neutrik about the OpticalCon advanced, OpticalCon LITE and Opticalcon DragonFly fiber optic solutions from Neutrik. They take a closer look at what benefits each of these solutions brings to the table, what kind of configurations are offered with each of these fiber optic solutions and what kind of performance you can expect when using them in your next design.

Click here for more information about Neutrik opticalCON® Fiber Optic Connector System