editor's blog
Subscribe Now

Go Wide

Last week Cadence announced a new wide-I/O memory controller IP block, ostensibly the first of its kind. This actually represents a risk start based on a JEDEC standard that’s not yet complete.

The idea behind the wide-I/O movement is predicated on use in 3D ICs, where a memory chip will be stacked on a logic chip, with the connections being made by TSVs. Instead of requiring higher-drive I/Os that connect to chip pads and traverse PCB traces to get to a memory chip (or back from the memory chip), you stay entirely within the package. An array of TSVs mean that you can handle far more I/Os that if you have to go to package pins. And the drive requirements are reduced tremendously, reducing both the size (due to smaller transistors) and power of the resulting combination.

Of course, with more connections, you get much higher bandwidth: this is a 512-bit interface. That’s a lot more data available in one chunk than you can traditionally get.

Cadence’s controller block includes traffic shaping algorithms to increase throughput as well as features to address power, including traffic sensing (so that power can respond to traffic) and an option for dynamic voltage and frequency scaling (DVFS).

This would seem to come well ahead of the standard, which is projected (no promises!) to be available to non-members in September. But, in many such standardization cases, the technical details are approved first, and then the resulting standard goes through a higher-level board approval step that largely examines the process by which the standard was set to make sure that it was done properly. 

Clearly Cadence is betting that there will be no further technical changes. Or that, if there are, they can update the IP before any customer commits to final silicon.

Leave a Reply

featured blogs
Jan 17, 2020
[From the last episode: We saw how virtual memory helps resolve the differences between where a compiler thinks things will go in memory and the real memories in a real system.] We'€™ve talked a lot about memory '€“ different kinds of memory, cache memory, heap memory, vi...
Jan 16, 2020
While Samtec started as a connector company with a focus on two-piece, pin-and-socket board stacking systems, High-Speed Board Stacking connectors and High-Speed Cable Assemblies now make up a significant portion of our sales. To support development in this area, in December ...
Jan 16, 2020
Betting on Hydrogen-Powered Cars On-demand DRC within P&R cuts closure time in half for MaxLinear Functional Safety Verification For AV SoC Designs Accelerated With Advanced Tools Automating the pain out of clock domain crossing verification Mentor unpacks LVS and LVL iss...
Jan 16, 2020
This little robot arm continually points to the current location of the International Space Station (ISS)....

Featured Video

RedFit IDC SKEDD Connector

Sponsored by Wurth Electronics and Mouser Electronics

Why attach a header connector to your PCB when you really don’t need one? If you’re plugging a ribbon cable into your board, particularly for a limited-use function such as provisioning, diagnostics, or testing, it can be costly and clunky to add a header connector to your BOM, and introduce yet another component to pick and place. Wouldn’t it be great if you could plug directly into your board with no connector required on the PCB side? In this episode of Chalk Talk, Amelia Dalton chats with Ben Arden from Wurth Electronics about Redfit, a slick new connector solution that plugs directly into standard via holes on your PCB.

Click here for more information about Wurth Electronics REDFIT IDC SKEDD Connector