industry news
Subscribe Now

Imec Demonstrates Shortwave Infrared (SWIR) Range Hyperspectral Imaging Camera

SAN FRANCISCO—Jan. 25, 2018 – Imec, the world-leading research and innovation hub in nanoelectronics and digital technologies, today announced that it will demonstrate its very first shortwave infrared (SWIR) range hyperspectral imaging camera at next week’s SPIE Photonics West in San Francisco. The SWIR range provides discriminatory information on all kinds of materials, paving the way to hyperspectral imaging applications in food sorting, waste management, machine vision, precision agriculture and medical diagnostics. Imec’s SWIR camera integrates CMOS-based spectral filters together with InGaAs-based imagers, thus combining the compact and low-cost capabilities of CMOS technology with the spectral range of InGaAs.

Semiconductor CMOS-based hyperspectral imaging filters, as designed and manufactured by imec for the past five years, have been utilized in a manner where they are integrated monolithically onto silicon-based CMOS image sensors, which has a sensitivity range from 400 – 1000 nm visible and near-IR (VNIR) range. However, it is expected that more than half of commercial multi and hyperspectral imaging applications need discriminative spectral data in the 1000 – 1700 nm SWIR range.

“SWIR range is key for hyperspectral imaging as it provides extremely valuable quantitative information about water, fatness, lipid and protein content of organic and inorganic matters like food, plants, human tissues, pharmaceutical powders, as well as key discriminatory characteristics about plastics, paper, wood and many other material properties,” commented Andy Lambrechts, program manager for integrated imaging activities at imec. “It was a natural evolution for imec to extend its offering into the SWIR range while leveraging its core capabilities in optical filter design and manufacturing, as well as its growing expertise in designing compact, low-cost and robust hyperspectral imaging system solutions to ensure this complex technology delivers on its promises.”

Imec’s initial SWIR range hyperspectral imaging cameras feature both linescan ‘stepped filter’ designs with 32 to 100 or more spectral bands, as well as snapshot mosaic solutions enabling the capture of 4 to 16 bands in real-time at video-rate speeds. Cameras with both USB3.0 and GIGE interface are currently in the field undergoing qualification with strategic partners.

“The InGaAs imager industry is at a turning point,” explained Jerome Baron, business development manager of integrated imaging and vision systems at imec. “As the market recognizes the numerous applications of SWIR range hyperspectral imaging cameras beyond its traditional military, remote sensing and scientific niche fields, the time is right for organizations such as imec to enable compact, robust and low-cost hyperspectral imaging cameras in the SWIR range too. Imec’s objectives will be to advance this offering among the most price sensitive volume markets for this technology which include food sorting, waste management and recycling, industrial machine vision, precision agriculture and medical diagnostics.”

The first SWIR range hyperspectral imaging cameras will be demonstrated through Feb. 1 at SPIE Photonics West, booth #4321 in the North Hall of Moscone center in San Francisco.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

The Future of Intelligent Devices is Here
Sponsored by Alif Semiconductor
In this episode of Chalk Talk, Amelia Dalton and Henrik Flodell from Alif Semiconductor explore the what, where, and how of Alif’s Ensemble 32-bit microcontrollers and fusion processors. They examine the autonomous intelligent power management, high on-chip integration and isolated security subsystem aspects of these 32-bit microcontrollers and fusion processors, the role that scalability plays in this processor family, and how you can utilize them for your next embedded design.
Aug 9, 2023
30,590 views