industry news
Subscribe to EE Journal Daily Newsletter
3 + 7 =

Brewer Science Partners With Arkema to Develop High-Chi DSA Materials for Advanced Node Patterning

July 10, 2017 – Rolla, Missouri, USA – Brewer Science Inc. today announced from SEMICON West the extension of its partnership with Arkema to develop second-generation directed self-assembly (DSA) materials using high-x (chi) block copolymers. These new materials target advanced-node wafer patterning processes, because they enable even smaller feature sizes than first-generation DSA materials. As such, they provide a cost-effective solution to achieving device nodes down to 5nm and beyond, thereby enabling the continuation of Moore’s law.

“There have been very high expectations that DSA would solve all patterning issues,” said Darron Jurajda, Business Unit Manager, Brewer Science Inc. “Like all worthwhile technologies, there are many challenges to be solved before going into production. Leveraging our earlier DSA collaboration with Arkema offers the best path for implementing the next generation of materials. Together, we look forward to unlocking DSA’s full potential in accordance with industry timelines for manufacturing.”

High-chi block copolymers will further extend DSA’s advantages, achieving feature sizes that meet the requirements for 5nm and beyond. Extending their partnership allows these companies to build on their knowledge base, giving them a head start on developing high-chi materials.

As feature sizes shrink more aggressively with each node, it has become cost prohibitive to create them using existing patterning processes, such as EUV, self-aligned double patterning and self-aligned quad patterning. This presents a challenge for foundries and integrated device manufacturers preparing to ramp to 7nm and 5nm processes. DSA provides an alternative solution to achieving fine feature patterning; can be explored for minimal investment; and is cost efficient in final production. Development of high-chi materials also expands the opportunity for implementing DSA in other applications, including photonics, membrane applications and other areas of microelectronics.

The original collaboration between the two companies combined Brewer Science’s know-how in patterning and process integration with Arkema’s leading-edge expertise in block copolymer development to develop polystyrene-polymethyl methacrylate DSA materials, which are now production-ready to manufacture sub-22nm features.

About Brewer Science

Brewer Science is a global technology leader in developing and manufacturing innovative materials and processes for the reliable fabrication of cutting-edge microdevices used in electronics such as tablet computers, smartphones, digital cameras, televisions, LED lighting and flexible technology products. In 1981, Brewer Science revolutionized lithography processes with its invention of ARC® materials. Today, Brewer Science continues to expand its technology portfolio to include products enabling advanced lithography, thin wafer handling, 3D integration, and chemical and mechanical device protection and products based on nanotechnology. With its headquarters in Rolla, Missouri, Brewer Science supports customers throughout the world with a service and distribution network in North America, Europe and Asia. We invite you to learn more about Brewer Science at www.brewerscience.com, follow us on Twitter at @BrewerScience, like us on Facebook and subscribe to our blog.

Leave a Reply

featured blogs
Nov 17, 2017
CASPA is the Chinese American Semiconductor Professional Association. Once a year they have their annual conference and dinner banquet. I ended up getting involved with them a few years ago when I stepped in with 24-hours' notice to moderate a panel session for them, plu...
Nov 15, 2017
SuperComputing 2017 remains in full force this week from the Colorado Convention Center in Denver.  There are lots of activity in presentations, seminars, demonstrations and exhibits on the tradeshow floor. Stay tuned to the Samtec blog the rest of the week for more highligh...
Nov 16, 2017
“Mommy, Daddy … Why is the sky blue?” As you scramble for an answer that lies somewhere between a discussion of refraction in gasses and “Oh, look—a doggie!” you already know the response to whatever you say will be a horrifyingly sincere “B...
Nov 07, 2017
Given that the industry is beginning to reach the limits of what can physically and economically be achieved through further shrinkage of process geometries, reducing feature size and increasing transistor counts is no longer achieving the same result it once did. Instead the...