industry news
Subscribe Now

Imec and its Partners Achieve Record Efficiency for Large Area Industrial Crystalline-silicon n-PERT Solar Cell

SEMICON WEST/INTERSOLAR NORTH AMERICA (Booth #SH2311), San Francisco — July 7, 2014 — Nano-electronics research center imec, reported today an n-type PERT crystalline silicon (Si) solar cell fabricated on a large area wafer (15.6cm x 15.6 cm) reaching a top conversion efficiency of 21.5 percent (calibrated at ISE Callab). This is the highest efficiency achieved for this type of solar cell on an industrial large area wafer size. This result will accelerate the adoption of n-type PERT (Passivated Emitter, Rear Totally diffused) solar cells in the industry as it clearly shows the potential for improved conversion efficiencies for next generation standard two side contacted crystalline silicon solar cells. Additionally imec researchers showed recently that n-type PERT solar cells of imec, having a rear emitter, are not affected by reliability risks originating from a front Ni/Cu plated metallization.

The cell reaching this 21.5 percent conversion efficiency had an open circuit voltage (Voc) of 677mV, a short circuit current (Jsc) of 39.1 mA/cm2, and 81.3% fill factor, and features a rear blanket p+ emitter obtained by boron diffusion. Reliable front metal contacts on an n+ front-surface-field are formed by means of Ni/Cu/Ag plating (3 bus bars grid) using an industrial plating tool from Meco, while the rear local contacts to the p+ emitter were obtained by laser ablation of the rear passivation stack and subsequent physical-vapor-deposition of aluminum. The rear passivation stack includes a thin (<10 nm) Atomic-Layer-Deposited (ALD) Al2O3 layer, deposited with the spatial ALD technique InPassion Lab® from SoLayTec. The adoption of ALD Al2O3 based-passivation for the p+ emitter resulted in an average improvement in cell efficiency of about 0.3% absolute with respect to passivation by wet oxidation. This illustrates the excellent capabilities of ALD for passivation layers in next generation cell concepts like PERC and n-type PERT.

“Notwithstanding the early development stage, the result shows very high efficiency potential of n-type PERT solar cells,” said Jozef Szlufcik, director of imec’s PV department, “Moreover, n-type cells remain unaffected by light induced degradation present in p-type cells due to Boron-Oxygen complex, which results in improved long term energy yield and, therefore, lower total cost/kWh”.

These results have been achieved in the framework of the imec’s industrial affiliation program on advanced silicon solar cells, dedicated to developing high performance and low cost Si PV-technologies. In this program, imec works closely together with industrial and academic partners along the solar cell value chain. Via participation and contribution to this program, these partners support imec’s developments and obtain early access to new technology solutions in this way accelerating their own product development.
To learn more about imec’s solar cell research progress, please visit the imec at booth #SH2311 at Semicon West/Intersolar North America, taking placeJuly 8-10, 2014 in San Francisco.

This press release can be downloaded at http://www2.imec.be/be_en/press/imec-news/imec-nPERT-solar-cell.html

About imec

Imec performs world-leading research in nanoelectronics and photovoltaics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of over 2,080 people includes more than 670 industrial residents and guest researchers. In 2013, imec’s revenue (P&L) totaled 332 million euro. Further information on imec can be found at www.imec.be. Stay up to date about what’s happening at imec with the monthly imec magazine, available for tablets and smartphones (as an app for iOS and Android), or via the websitewww.imec.be/imecmagazine

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

Introducing Altera® Agilex 5 FPGAs and SoCs

Sponsored by Intel

Learn about the Altera Agilex 5 FPGA Family for tomorrow’s edge intelligent applications.

To learn more about Agilex 5 visit: Agilex™ 5 FPGA and SoC FPGA Product Overview

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

FleClear: TDK’s Transparent Conductive Ag Film
Sponsored by Mouser Electronics and TDK
In this episode of Chalk Talk, Amelia Dalton and Chris Burket from TDK investigate the what, where, and how of TDK’s transparent conductive Ag film called FleClear. They examine the benefits that FleClear brings to the table when it comes to transparency, surface resistance and haze. They also chat about how FleClear compares to other similar solutions on the market today and how you can utilize FleClear in your next design.
Feb 7, 2024
11,880 views