industry news
Subscribe Now

Quantum Materials Secures Uncloneable Anti-Counterfeiting 3D Printing Technology

SAN MARCOS, TexasJune 30, 2014 /PRNewswire/ — Quantum Materials Corporation (OTCQB:QTMM) announces securing 3D printing and additive manufacturing anti-counterfeiting quantum dot detection technology developed at the Institute for Critical Technology and Applied Science and the Design, Research, and Education for Additive Manufacturing Systems (DREAMS) Laboratory at Virginia Tech.

The technology embeds quantum dots within objects being 3D printed to produce a unique, physically uncloneable signature known only to the object’s manufacturer. This new quantum dot security method will help to ensure positive identity of any particular object through a wide variety of application and detection methods.  Novel uses of embedded nanomaterials cover a wide field of growing industries of encryption, secure key exchange, the protection of hardware from tampering and other secure identification needs.

David Doderer, QMC VP for Research and Development, stated, “The remarkable number of variations of semiconductor nanomaterials properties QMC can manufacture, coupled with Virginia Tech’s anti-counterfeiting process design, combine to offer corporations extreme flexibility in designing physical cryptography systems to thwart counterfeiters.  As 3D printing and additive manufacturing technology advances, its ubiquity allows for the easy pirating of protected designs.  We are pleased to work withVirginia Tech to develop this technology’s security potential in a way that minimizes threats and maximizes 3D printing’s future impact on product design and delivery by protecting and insuring the integrity of manufactured products.”

Besides the inherent nature of the process technology from Virginia Tech that enables unique signatures, Quantum Materials offers unique semiconductor nanomaterials that physically increase these security measures by not only emitting different colors of the spectra from blue to red, but by using tetrapod quantum dots with precise structural characteristics, or dual emission tetrapods that can emit two different colors. The combination of unique process and nanomaterial dramatically improves the security strength, in a similar way that moving from 128-bit to 256-bit encryption increases confidence in a nearly-unbreakable key.

According to an industry report by Allied Market Research, the “Global anti-counterfeit packaging market accounted for $57.4 billion in 2013, which is forecast to generate revenue of $142.7 billion by 2020 at 13.9% CAGR from 2013-2020.”  Other new research from Global Industry Analysts says that the food and pharmaceutical industries are currently the most vulnerable to the actions of counterfeiters and the global market for anti-counterfeiting technologies could reach $82.2B by 2015.

About Quantum Materials Corp.

Quantum Materials Corp. develops and manufactures Tetrapod Quantum Dots for use in medical, display, solar energy and lighting applications through its patent pending volume production process. Quantum dot semiconductors enable a new level of engineered performance in a wide array of established consumer and industrial products. QMC’s volume manufacturing methods enable consistent QD quality and scalable cost reductions to drive innovative discovery to commercial success.  QMC’s wholly owned subsidiary, Solterra Renewable Technologies is leading the development of sustainable and cost-effective quantum dot based solar technology.  
(http://www.QMCdots.com) (www.SolterraRenewable.com)

About ICTAS

ICTAS lever­ages Virginia Tech’s existing research strengths to position the university as an agent of discovery and problem solving in the technological and scientific global environment. (http://www.ictas.vt.edu)

About the DREAMS Laboratory

DREAMS Lab members have a vision of the future wherein today’s “rapid prototyping” technologies are of a maturity to be considered as viable platforms for the manufacture of end-use artifacts.  Our mission is to be a leader in the transition of rapid prototyping technologies to the new paradigm of additive manufacturing. (http://www.dreams.me.vt.edu/)

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

Introducing Altera® Agilex 5 FPGAs and SoCs

Sponsored by Intel

Learn about the Altera Agilex 5 FPGA Family for tomorrow’s edge intelligent applications.

To learn more about Agilex 5 visit: Agilex™ 5 FPGA and SoC FPGA Product Overview

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

Nexperia Energy Harvesting Solutions
Sponsored by Mouser Electronics and Nexperia
Energy harvesting is a great way to ensure a sustainable future of electronics by eliminating batteries and e-waste. In this episode of Chalk Talk, Amelia Dalton and Rodrigo Mesquita from Nexperia explore the process of designing in energy harvesting and why Nexperia’s inductor-less PMICs are an energy harvesting game changer for wearable technology, sensor-based applications, and more!
May 9, 2023
41,673 views