feature article
Subscribe Now

Between a Rock and a Soft Place

When Bad Decisions Go Good

Do you really want what’s good for you?

As engineers, we’re trained to find the best solution to a set of problems. Granted, the definition of “best” can be a bit loose. Sometimes it’s the cheapest way to get the job done. Other times it’s the product you can conjure up the most quickly. And, on rare occasions, it’s actually the one with the best performance, lowest power consumption, and highest reliability. But whatever the parameters, we’re predisposed to find the optimal solution to a given set of constraints.

So why do we make bad decisions on purpose?

Take x86 microprocessors—please. As everybody knows, today’s x86 chips are the result of a slow, lurching evolutionary process that began in 1971 with the 4004 chip. That clunky, low-end processor architecture lives on today and is still one of the best-selling processors in the world.

At the opposite end of the spectrum, we have user-configurable processors from Tensilica, ARC (now part of Synopsys), IMEC, and others. These are all CPU designs that you, as a mere mortal, can hand-tune for your application. Then there are the special-purpose processor companies that make chips that have been designed from the ground up to kick butt at encryption, or network-packet inspection, or motor control, or any of a dozen other hard problems.

You’d think that the specialty processors would flourish and that general-purpose CPUs would be circling the drain by now. But that hasn’t happened. In fact, we see just the opposite: x86 chips ship in record numbers, ARM is growing by leaps and bounds, MIPS and PowerPC are both doing well, and all the old 8-bit and 16-bit chip families are still alive and kicking.

What’s up with that? Why are we buying the old chips instead of the good chips?

The success of each CPU family seems to be inversely proportional to its flexibility. The x86 has remained rock hard over the ages. Every ARM core is exactly like every other one since the dawn of the Acorn RISC Machine. MIPS chips and PowerPC processors can still run their old binaries. And heaven knows the 8051, 6805, and other old microcontrollers haven’t advanced in millennia.

In contrast, the specialty and configurable processors move all over the place; that’s what they do. They zig and they zag, chasing the newest application bottlenecks and the latest thinking in computer design. They’re always up to date. In a word, they’re optimized. In another word, they’re unpopular. Why is that?

You’d think that, as engineers, we’d always opt for the best technical solution to any problem. Even when cost is the controlling variable, specialty processors often are much cheaper than the generic alternatives. They’re more power-efficient, too. In fact, they’re better in every conceivable way, and yet we generally opt for the option-less alternative. We follow the herd. We stick to the middle of the road.

There are several possible reasons for this. One is that we’re just unimaginative. Or that we don’t have the time to evaluate all the alternatives so we pick from among the few options that we know about. Or that we prefer to reuse familiar hardware, thereby perpetuating older architectures. Maybe we don’t believe the claims of the upstart specialty-processor companies. Perhaps the software guys in the other building don’t want to learn a new compiler. Maybe our pointy-haired boss has dictated an old-fashioned processor because his retirement plan is tied up in their stock.

Whatever the cause(s), we industriously avoid the “best” hardware for the job. I think part of the reason is control. We like to control some—but not all—of our own designs. Maybe it’s the application software; maybe it’s the peripheral hardware; maybe it’s the user interface. But there are some parts of every design that we readily abandon to outsiders. Sometimes we just feel better when someone else takes control. 

The constraint-versus-control dilemma depends on the person or the circumstances. Infants like to be tightly wrapped in their blankets, and they’ll startle or cry if given too much room to move. Teenagers want just the opposite. In political terms, the relative merits of individual freedom can spark fierce debate—or worse. Citizens of tightly controlled states (think North Korea) believe strongly that their system of government is the best. Residents of relatively loosely controlled nations think the same thing. There’s clearly no single answer for everyone.

Working engineers (that is, those with a paying job) know that a successful design is all about tradeoffs, and that you can’t obsess over every decision all the time. “Good enough” is what separates engineering from science and academia. An expeditious choice of processor is the first step toward a speedy product completion. Relying on the rock of an old processor can be better than getting mired in the soft place of a configurable one. Abandon control of the CPU to someone else and concentrate on innovating elsewhere. It’s not always the “best” solution, nor the most glamorous, but it’s often the most expedient and successful. And that’s never a bad decision. 

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

E-Mobility - Charging Stations & Wallboxes AC or DC Charging?
In this episode of Chalk Talk, Amelia Dalton and Andreas Nadler from Würth Elektronik investigate e-mobility charging stations and wallboxes. We take a closer look at the benefits, components, and functions of AC and DC wallboxes and charging stations. They also examine the role that DC link capacitors play in power conversion and how Würth Elektronik can help you create your next AC and DC wallbox or charging station design.
Jul 12, 2023
32,877 views