feature article
Subscribe to EE Journal Daily Newsletter
3 + 6 =

Enabling 100-Gbit OTN Muxponder Solutions on 28-nm FPGAs

The rapid growth in bandwidth required to support video and broadband wireless is straining communication networks. The current 10-Gbit OTN infrastructure is facing bandwidth exhaustion as the channels approach their maximum capacity. Faced with higher capital expenditure, higher operating expenditure, and shrinking revenue growth, service providers are turning to 100-Gbit OTN solutions to scale their current 10-Gbit-based networks by a factor of ten. However, there are large numbers of legacy OTN, SONET, Ethernet, and storage systems operating at lower data rates, which need to be plugged into the emerging optical infrastructure using 100-Gbit OTN muxponders. Altera’s Stratix V FPGA family contains a number of key innovations that directly address the needs of 100-Gbit OTN muxponder solutions.


The explosive demand for bandwidth in the metro and long-haul networking space is forcing service providers to find ways to utilize their wavelength division multiplexing (WDM) networks more efficiently. Figure 1 shows the increasing services and bandwidth demands being made of today’s Optical Transport Network (OTN) infrastructure.


Figure 1. Demands Being Made of Today’s OTN Infrastructure

This demand for ever-increasing bandwidth is driven by endless new applications such as peer-to-peer sharing, social networking, digital video transmission, broadband wireless handsets and video conferencing and messaging. In the past, service providers have attempted to keep up with this growth by simply adding more channels to their existing WDM networks, as shown in Figure 2. However, this scheme exhausted the available channels, leaving service providers to face higher capital expenditure, higher operating expenditure, and shrinking revenue growth. The reality is that conventional 10-Gbit OTN architectures do not facilitate cost-effective implementations that optimize bandwidth usage in greenfield deployments.


Figure 2. Traditionally, Service Providers Added More Channels as Bandwidth Demands Increased

With the introduction and adoption of 40-/100-Gbit Ethernet, and the acceptance of OTN standards, service providers are now turning to 100-Gbit OTN solutions to scale their channel capacity by a factor of ten. However, there are a large number of legacy OTN, SONET, Ethernet, and storage systems operating at lower data rates, which somehow must be connected into the emerging OTN infrastructure. One way to achieve this, in a way that maximizes the available bandwidth while reducing space and power, is to aggregate multiple lower data-rate client channels onto a single wavelength at a higher data rate. This is the role of the 100-Gbit OTN multiplexing transponder (muxponder).

100-Gbit OTN Muxponder Solution

Traditionally, OTN systems have line cards that interface with one or more client ports and aggregate them to an optical transport port. Each line card is designed to meet the requirements of a particular client protocol, and specific client and transport data rates. In an environment where there are many different client port types, many different line cards are required in each chassis. This is not a cost-, area-, power-, or management-efficient solution, and results in the individual client payloads being transported on different wavelengths, which reduces the overall efficiency of the fiber-optic cable.

Author:  Allan Davidson, Sr. Product Marketing Manager, High-End FPGA Products, Altera Corporation

Leave a Reply

featured blogs
Jan 16, 2018
The Sunday of IEDM is always two full-day short courses. One is on the future of memory technology, one is on the future of logic technology. This year the logic one was titled Boosting Performance, Ensuring Reliability, Managing Variation in Sub-5nm CMOS . I have to admit I ...
Jan 16, 2018
Samtec will be introducing several new products at DesignCon 2018. All of these products are designed to increase data rates, increase system density, and shrink product footprints, so designers can meet their system signal integrity needs. NovaRay™ High Bandwidth, High ...
Jan 5, 2018
When visitors to CES 2018 want to travel to the Las Vegas Convention Center across town, it will likely be in a fully autonomous vehicle from Lyft getting them there. While this futurist trip will certainly be a first for many riders, this type of point-to-point travel will s...
Jan 10, 2018
Recently, Electronics Products Magazine announced their 42nd Annual Product of the Year award winners, with Cadence Design Systems winning for their Virtuoso® System Design Platform. According to the article, the editors “have chosen [products] they......
Jan 15, 2018
This is the seventh in a series of blog posts showcasing the winning designs from the 27th Annual PCB Technology Leadership Awards. The 1st place winner in the Telecom, Network Controllers & Line Cards  category is Altice Labs, Portugal. This Switching Matrix card is a...