feature article
Subscribe Now

Dimensional Breakthrough

Startup Introduces 4D FPGAs

Just when we were trying to digest the recent announcements of 3D FPGA devices, along comes a horizon-widening announcement from TesseracTech of their plans for 4D FPGAs.  With companies like Tabula and Tier Logic working to gain a process node or two with their newly announced 3D device architectures, TesseracTech is upping the ante – bringing the first four-dimensional chips to the forefront.

“We’ve known that 3D chips were coming for awhile,” explains Elliott Henthorn,  TesseracTech VP of marketing.  “Honestly, we knew that three dimensions would never be enough.  Xilinx and Altera can usually level the playing field by keeping a couple of process nodes ahead with their 2D technology, and we believe a fourth dimension is required to sustain a real competitive advantage.”

The not-yet-announced TT TetrArray has LUTs arranged in four spacial dimensions.  The arrangement has obvious advantages in density.  Conventional FPGA architectures use 2D arrays of look-up tables (LUTs) for their programmable fabric.  Newly-announced 3D FPGAs take that one step farther (through various means) by giving an effective “stack” of LUTs – allowing much higher effective logic densities.  The TetrArray folds the LUT space one more time, giving an exponential advantage in effective device density.

“4D semiconductor technology brings significant benefits to the table,” continues Henthorn. “Obviously we have much greater density, but that’s just the beginning.  Take routing, for example.  Most IP blocks can be implemented in a single hyperLUT.  That means that no routing is required between individual logic elements. Since routing delay is the dominant factor in timing these days, most of our blocks are basically infinitely fast.” 

We admit we’re a little confused by that last claim.

We asked for more information on the concept of the hyperLUT.  “We have applied for a patent for the underlying mechanism for the hyperLUT, which is what we call Schrodinger’s Latch,” continues Henthorn. “You see, a conventional logic element is either in a zero or one state at any given time.  With Schrodinger’s Latch, the logic state is both zero and one until it is observed by an input of another element.  We can use this latch to create a LUT that has effectively infinite capacity, creating the exponentially-folded logic space that we get in the TetrArray.  Does that make sense?”

In short, no.

TesseracTech is pushing the limits of both physics and credibility with the announcement, which they emphasize is just a technology roadmap – with more details to come as the family gets closer to volume production.  However, they are releasing some details about the family in advance.  TT TetrArray will not be a family of FPGAs, but rather a single device.  “Really, we’ve obsoleted the concept of size in FPGAs,” explains Henthorn.  “With 4D density advantages, there’s no point in making a bunch of different devices – all with infinite density.  We’re just bringing a single chip to market that will satisfy the needs of everyone.”

While the single device concept makes sense with regard to logic density, we still are not convinced about the one-chip-fits-all concept with regard to IO capabilities.  “The TT TetrArray will be available in a wide range of packages,” explains Henthorn.  We should be able to give people as many pins as they need for connecting to the outside world.  The only trade-off there is package size versus board area.”  

The package offering confused us.  It seems that if the logic takes basically no space on the device, all the chips would be IO limited, making the chip size a direct function of the number of IOs.  “You’re thinking in two dimensions again,” retorts Henthorn.  “What you’re saying would be true of conventional wire-bond packaging, or even with flip-chip, although that allows for less constrained IO placement.  Our second big breakthrough is applying the concept of Schrodinger’s Latch to IO buffers.  You see – since the logic state at any given time is dependent on the observing input, we can connect all the pins of the package to a single pad on the die.  This eliminates the space constraint for IO.”

No.  No, you can’t.

We were curious what process technology was the basis for TesseracTech’s dubious claims.  As far as we are aware, leading semiconductor fabs like TSMC offer mostly conventional CMOS fabrication techniques that don’t seem to lend themselves to the kinds of innovation that TesseracTech is describing.  The company is apparently not yet giving out specifics on their fab partners.  “If you’ll look at the next PowerPoint slide, you’ll see that our technology doesn’t really depend on a specific fabrication technique.  We’ve designed TT TetrArray in a technology-independent fashion so that we aren’t bound by the constraints of conventional IC processes.”

We decided to move the discussion to the design and tool flow for the new product.  “For customers that are familiar with traditional FPGA design methodologies, we didn’t want to rock the boat,” says Henthorn.  “So, we worked hard to be sure that conventional HDL-based simulation and synthesis methodologies work fine with TetrArray.  However, we also didn’t want to scare away new designers who don’t yet know VHDL or Verilog, so we’ve got an alternative flow that requires no tools whatsoever. You can go straight from concept to silicon.”

The company’s ConceptCompiler supposedly takes ideas directly into hardware with no intermediate requirement for hardware description languages.  “We’ve exploited the concept of the hyperLUT in our design tool stragety,” drones Henthorn.  “If you think about it, conventional design methodologies are focused on getting the right logic values to the right inputs at the right time.  However, as I explained with Schrodinger’s Latch, we’ve done away with the concept of logic values at the gate level.  Using that idea, and by applying quantum-correlaries of De Morgan’s laws, most designs can be simplified down to a single X.  We call that the Solution of Singularity.  Working backward from that solution, it doesn’t really matter what logic structure the designer begins with; therefore, we can do away with HDL altogether.

The company says no specific date has yet been announced for availability of TT TetrArray.  They are sharing preliminary pricing.  “In volume, we plan to ship TT TetrArray at a price of zero,” warbles Henthorn.  “We’ve seen price act as a barrier to adoption in many semiconductor startups, and we’re determined to push past that with our launch.  By taking cost off the table, you can see that we open the door to much more widespread deployment of the product.”

Clearly, we didn’t hear that right.

We asked whether giving the product away for free would impact the viability of the company from a business perspective.  “That’s a really shortsighted view,” replies Henthorn.  “If you look at companies like Google, facebook, twitter… all of them gained market share by offering their stuff for free.  We’re now taking that concept into the hardware arena.  We feel we’ll be able to capitalize on the combination of our technology advantage and a potentially huge installed base to monetize future offerings.  We’ve discussed this at length with our equity partner, Chapter 11 Ventures, and they’re completely supportive.”

This isn’t the first time we’ve been a little skeptical on a new FPGA product.  A year ago, we ran an article on a new FPGA family from RetroLogik (click here) that hasn’t exactly taken the world by storm.  We’re going to reserve judgment on TesseracTech until we see more of their plans in future announcements.

(image courtesy Robert Webb and his Great Stella Software)

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

PIC® and AVR® Microcontrollers Enable Low-Power Applications
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Amelia Dalton and Marc McComb from Microchip explore how Microchip’s PIC® and AVR® MCUs are a game changer when it comes to low power embedded designs. They investigate the benefits that the flexible signal routing, core independent peripherals, and Analog Peripheral Manager (APM) bring to modern embedded designs and how these microcontroller families can help you avoid a variety of pitfalls in your next design.
Jan 15, 2024
14,280 views