feature article
Subscribe Now

Freescale Goes Multi-Core

Comprehensive Roadmap Shows Strategy

The math is simple.  When the amount of power required to double the speed of one processor far exceeds the amount of power required for two processors, it’s time to be thinking about multi-core.  This idea has been around for at least thirty years.  We all knew it would eventually happen.  Supercomputing was probably the first to fall.  The giant monolithic supercomputer was rendered obsolete by massively parallel processing arrays years ago.  In the desktop computing world, we have made the jump from single core to multi-core for high-end machines within the last two years.  For the embedded systems world, it appears that the time is now.

Freescale announced an expansive and comprehensive multi-core strategy this week.  The strategy includes a description of the company’s new multi-core microarchitecture, a simulation/virtual platform environment to support software development, and a process announcement that the new technology will be implemented in 45nm silicon. 

Multi-core poses significant challenges on both the hardware and the software side.  The fundamental challenge in hardware is to try to make one plus one equal something near two.  If your effective available processing power doesn’t scale reasonably well with the increasing number of processor cores, our simple math equation (the one that justified multi-core in the first place) starts to break down. 

There are a number of hardware bottlenecks that can interfere with the smooth scaling of performance in multi-core systems.  The first of these is the interconnect between processing elements (and between processing elements and the rest of the world).  Traditional bus-based systems start to clog up when more than one processor is feeding from the trough.  To address this problem, Freescale has switched to a scalable switching fabric called “CoreNet” on-chip.  This fabric eliminates bus contention issues and can support the much higher bandwidth required to keep potentially more than 32 cores operating smoothly.

When you get more than one processor fighting for resources, caching is also a tricky proposition.  Freescale’s new multi-core microarchitecture sports a tri-level cache hierarchy with back-side L2 caches, multiple L3 shared caches, and multiple memory controllers.  There is also a dedicated architecture to support on-demand application acceleration by allowing higher-performance, lower-power hardware implementation of a variety of specialized algorithms for tasks like pattern matching, compression/decompression, crypto security, table lookups, and datapath resource management.  The multi-core microarchitecture is independent of any specific choice of processor architecture and can handle a combination of homogeneous and heterogeneous processor cores and specialized hardware accelerators.   The platform will use Freescale’s PowerArchitecture cores. 

A third major problem with extracting the potential of multi-core processing is making software compatible with multi-core semantics.  For decades, we’ve trained programmers to think sequentially, breaking complex processes down into sets of ordered steps.  Now, with a plurality of processors available, that traditional thinking is counter-productive.  The current software development model is far behind the curve on taking advantage of the inherent parallelism available in multi-core environments.  From the training of software engineers to the structure of programming languages to the design of compilers and operating systems, sequential assumptions are deeply embedded.  In addition, billions of lines of legacy sequential software are already tested and waiting to be accelerated by modern multi-core technology.

Over time, we need to evolve the programming model to account for multi-core processing in a more reasonable way.  We also need to develop improved technology for running legacy applications efficiently on multi-core processors, handling issues such as load balancing and ambiguity in the availability of processing elements.  While this overhaul will obviously take years or decades to complete, there are a number of good first steps already behind us.

One of those first steps is the multi-core development environment Freescale is announcing in conjunction with their rollout.  Recognizing that embedded development teams will need some time to get their software ready far in advance of hardware delivery, they have worked with Virtutech (whose Simics virtual platform we’ve covered in previous articles) to create a virtual platform for the new offering.  Virtualization allows development of software to proceed independent of hardware and provides a level of debug and analysis visibility not possible in a pure hardware environment.  The Virtutech system will allow a mixture of functional models and cycle-accurate models on the hardware side, allowing you to trade off between simulation performance and accuracy, and facilitating the assessment of multi-core performance on particular software.

Multi-core devices from Freescale will not be available until 2008, owing in part to their decision to base the platform on 45nm silicon-on-insulator (SOI) technology.  The company expects to see significant dynamic power reduction (estimated at 50%), performance increase, and cost reduction (50% die-size reduction) compared to 90nm implementations.  Freescale expects the new platform to net a 4X performance increase over their previous offerings.  The 45nm technology is based on an ongoing collaboration with IBM Alliance and has a roadmap to 32nm and 22nm in place.

With Freescale’s announcement, a plethora of partners are joining the game – Wind River, MontaVista, and Green Hills have all announced software support and endorsement of the new platform, Virtutech has announced the Simics collaboration with Freescale, and a host of other vendors are likely to chime in with their own announcements as the new platform comes to market. 

The hybrid simulation environment that supports the new multi-core platform will be available starting in Q4 2007, and the first devices are expected to hit the market in late 2008.  The MPC8572 and corresponding simulation model (which “closely mirrors” the first multi-core platform implementations) are available today.

While availability of most of the actual products announced today is frustratingly far away, the scope of the announcement and the program show that Freescale is committed to multi-core as the future direction of the embedded industry.  With consumers demanding devices with unprecedented levels of performance, communication, and integration, it is likely that even run-of-the-mill embedded applications will require multi-core performance in the near future.  Given the impact of the advent of multi-core on the engineering community that must deploy these devices, starting with an architecture announcement now is a prudent first step.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Unlock the Productivity and Efficiency of a Connected Plant
In this episode of Chalk Talk, Amelia Dalton and Patrick Casey from Schneider Electric explore the multitude of benefits that mobility brings to industrial applications. They investigate how Schneider Electric’s Harmony Hub can simplify monitoring and testing, increase operational efficiency and connectivity openness in industrial plants, and how NFC technology can bring new innovation possibilities to IIoT applications.
Apr 23, 2024
554 views