feature article
Subscribe Now

Enabling 100-Gbit OTN Muxponder Solutions on 28-nm FPGAs

The rapid growth in bandwidth required to support video and broadband wireless is straining communication networks. The current 10-Gbit OTN infrastructure is facing bandwidth exhaustion as the channels approach their maximum capacity. Faced with higher capital expenditure, higher operating expenditure, and shrinking revenue growth, service providers are turning to 100-Gbit OTN solutions to scale their current 10-Gbit-based networks by a factor of ten. However, there are large numbers of legacy OTN, SONET, Ethernet, and storage systems operating at lower data rates, which need to be plugged into the emerging optical infrastructure using 100-Gbit OTN muxponders. Altera’s Stratix V FPGA family contains a number of key innovations that directly address the needs of 100-Gbit OTN muxponder solutions.

Introduction

The explosive demand for bandwidth in the metro and long-haul networking space is forcing service providers to find ways to utilize their wavelength division multiplexing (WDM) networks more efficiently. Figure 1 shows the increasing services and bandwidth demands being made of today’s Optical Transport Network (OTN) infrastructure.

100_image1.jpg

Figure 1. Demands Being Made of Today’s OTN Infrastructure
 

This demand for ever-increasing bandwidth is driven by endless new applications such as peer-to-peer sharing, social networking, digital video transmission, broadband wireless handsets and video conferencing and messaging. In the past, service providers have attempted to keep up with this growth by simply adding more channels to their existing WDM networks, as shown in Figure 2. However, this scheme exhausted the available channels, leaving service providers to face higher capital expenditure, higher operating expenditure, and shrinking revenue growth. The reality is that conventional 10-Gbit OTN architectures do not facilitate cost-effective implementations that optimize bandwidth usage in greenfield deployments.

100_image2.jpg

Figure 2. Traditionally, Service Providers Added More Channels as Bandwidth Demands Increased
 

With the introduction and adoption of 40-/100-Gbit Ethernet, and the acceptance of OTN standards, service providers are now turning to 100-Gbit OTN solutions to scale their channel capacity by a factor of ten. However, there are a large number of legacy OTN, SONET, Ethernet, and storage systems operating at lower data rates, which somehow must be connected into the emerging OTN infrastructure. One way to achieve this, in a way that maximizes the available bandwidth while reducing space and power, is to aggregate multiple lower data-rate client channels onto a single wavelength at a higher data rate. This is the role of the 100-Gbit OTN multiplexing transponder (muxponder).

100-Gbit OTN Muxponder Solution

Traditionally, OTN systems have line cards that interface with one or more client ports and aggregate them to an optical transport port. Each line card is designed to meet the requirements of a particular client protocol, and specific client and transport data rates. In an environment where there are many different client port types, many different line cards are required in each chassis. This is not a cost-, area-, power-, or management-efficient solution, and results in the individual client payloads being transported on different wavelengths, which reduces the overall efficiency of the fiber-optic cable.

Author:  Allan Davidson, Sr. Product Marketing Manager, High-End FPGA Products, Altera Corporation

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Industrial Internet of Things (IIoT)
Sponsored by Mouser Electronics and Eaton
In this episode of Chalk Talk, Amelia Dalton and Mohammad Mohiuddin from Eaton explore the components, communication protocols, and sensing solutions needed for today’s growing IIoT infrastructure. They take a closer look at how Eaton's circuit protection solutions, magnetics, capacitors and terminal blocks can help you ensure the success of your next industrial internet of things design.
Jun 14, 2023
35,912 views