editor's blog
Subscribe Now

AI for EDA: Rohit Sharma’s view from EDPS

 

Rohit Sharma is the founder and CEO of Pairpath, an EDA company with a clear mission:

“Enable customers squeeze every pico-second of performance and every milli-watt of power by efficiently providing sign-off accurate models.”

At the recent Electronic Process Design Symposium (EDPS) held at SEMI’s HQ in Milpitas, Sharma discussed the role(s) that AI might play in EDA. He started by noting that AI/ML research now consumes more than 1% of the world’s R&D budget. (Other EDPS speakers noted that the number of AI research papers has been growing exponentially, supplanting Moore’s Law for semiconductors with some other AI-research related law.)

Sharma said that the most likely use for AI in EDA was to add new features. In other words, he expects that the addition of AI to EDA will not be disruptive, but it definitely has a place. The most likely best fit for AI is in replacing algorithms that have not been successful, or not sufficiently successful.

The example Sharma gave was for cell classification—for example, characterizing a certain transistor layout as a full adder. Sharma said this is a common EDA problem and it’s an NP-complete problem. Although “NP” stands for “nondeterministic polynomial” and NP-complete are the hardest NP problems to solve, in my own mind I read “NP complete” as “not possible to complete.” At least not in any commercially practical amount of time.

It’s sort of like the dilemma that the newly reconstituted Spock faces in “Star Trek IV: The Voyage Home” (aka “Star Trek saves the whales.”) Here’s a dialog fragment from the movie to remind you:

 

Kirk: Mr. Spock, have you accounted for the variable mass of whales and water in your time re-entry program?

Spock: Mr. Scott cannot give me exact figures, Admiral, so… I will make a guess.

Kirk: A guess? You, Spock? That’s extraordinary.

 

NP-complete problems are like that. They have “high dimensionality” (Sharma’s words), so they’re hard to encode into a deterministic algorithm. AI inference used for pattern matching has no dilemma here. AI inferencing engines will happily serve up their best “guess.”

Sharma also listed the challenges associated with adding AI to EDA (generalizable to any AI use):

  1. A clear value proposition. (Just because you can use AI doesn’t mean that doing so is a good idea.)
  2. The AI use model for any specific application
  3. Data engineering. Be sure to look at the data set(s) before trying to apply ML.
  4. High dimensionality. (The Spock dilemma.)
  5. ML technology selection
  6. Integration of AI into legacy systems
  7. Acceptance of probabilistic results (will AI’s best “guess” suffice?)

In his concluding remarks, Sharma said that despite these challenges, he expects AI/ML will very likely alter the way EDA software is written.

 

One thought on “AI for EDA: Rohit Sharma’s view from EDPS”

  1. Let’s see now: EDA was born when “VERILOG CAN BE SIMULATED!!!!” became the driving force Verilog should(MUST) be used for design entry. Designers were reluctant, but as usual hype and buzzwords prevailed.

    No wonder “The example Sharma gave was for cell classification—for example, characterizing a certain transistor layout as a full adder. ” is a problem. They do not yet realize that a transistor layout is a Boolean thing, therefore it is a total mystery.

    There were countless full adders in technologies ranging from pulse gate, to nands, nors designed, built, and used before Design Automation. In fact, the origin of Design Automation (DA) was to wire PCBs for the IBM System360 in the early 1960’s.

    Automated Logic Diagrams were used for logic gates to show fan-in and fan-out for each gate.
    Starting at any gate it was possible to find the input logic conditions, the gate logic function, and the gates in the network that use the output.

    There were no simulators. so waveforms had to be hand drawn if they were needed.

    So now EDA still has trouble characterizing an adder? Carry save and carry lookahead adders were invented, eye-ball verified, pencil and paper simulated, build, used over 50 years ago.
    The key was Boolean Algebra — which EDA has nothing to do with, thankyou very much.

    I was one of the first users of ALDS. I designed, debugged, trouble shot, retrofitted from the smallest to the biggest. What? Without Verilog, VHDL, simulation, synthesis?

Leave a Reply

featured blogs
Mar 18, 2024
Innovation in the AI and supercomputing domains is proceeding at a rapid pace, with each new advancement heralding a future more tightly interwoven with the threads of intelligence and computation. Cadence, with the release of its Millennium Platform, co-optimized with NVIDIA...
Mar 18, 2024
Cloud-based EDA tools are critical to accelerating AI chip design and verification; see how NeuReality leveraged cloud-based chip emulation for their 7NR1 NAPU.The post NeuReality Accelerates 7nm AI Chip Tape-Out with Cloud-Based Emulation appeared first on Chip Design....
Mar 5, 2024
Those clever chaps and chapesses at SiTime recently posted a blog: "Decoding Time: Why Leap Years Are Essential for Precision"...

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured paper

Reduce 3D IC design complexity with early package assembly verification

Sponsored by Siemens Digital Industries Software

Uncover the unique challenges, along with the latest Calibre verification solutions, for 3D IC design in this new technical paper. As 2.5D and 3D ICs redefine the possibilities of semiconductor design, discover how Siemens is leading the way in verifying complex multi-dimensional systems, while shifting verification left to do so earlier in the design process.

Click here to read more

featured chalk talk

One Year of Synopsys Cloud: Adoption, Enhancements and Evolution
Sponsored by Synopsys
The adoption of the cloud in the design automation industry has encouraged innovation across the entire semiconductor lifecycle. In this episode of Chalk Talk, Amelia Dalton chats with Vikram Bhatia from Synopsys about how Synopsys is redefining EDA in the Cloud with the industry’s first complete browser-based EDA-as-a-Service cloud platform. They explore the benefits that this on-demand pay-per use, web-based portal can bring to your next design. 
Jul 11, 2023
29,001 views