editor's blog
Subscribe Now

Taking the Temperature

Three of this year’s ISSCC’s sensor papers related to temperature sensors, although with different approaches and goals.

The first of them addresses the needs of tough environments such as those that automotive and military applications require. Their main motivator was the fact that, at high temperatures, traditional on-chip bipolar junction transistor (BJT) temperature sensors become much less accurate, so designers end up opting for off-chip thermistors and such.

So their idea was not to measure temperature through transistor characteristics, but rather to measure the thermal diffusivity – how fast heat travels, which is proportional to the -1.8 power of the absolute temperature. Measuring the diffusivity is conceptually easy: have a heat source (a resistor) and measure how long the heat takes to travel through the silicon to a nearby thermopile.

Rather than just measuring time, however, the resistor is pulsed and the response is detected as a low-frequency signal. When the temperature changes, it takes more or less time for the signal to reach the sensor, resulting in a phase shift in the signal.

The challenge here is that the frequency needs to be accurate, requiring an accurate time base. To avoid that, they did a second such sensor as a reference, this time including an oxide trench between the resistor and sensor. Now the heat has to go through the oxide en route, and the oxide thermal diffusion is about 100 times less that than of silicon, and is about 20 times less dependent on the absolute temperature. Using this as a reference, they were able to cancel out variations.

Combined with a factory room-temperature trim that took care of trench spread variation, they achieved a 0.4 °C accuracy.

They noted that SOI works better for this because the underlying oxide lets less of the heat leak away, making the whole thing more sensitive.

They did acknowledge that power is a bit of an issue for this approach…

You can find more detail on this in Session 11.5 of the proceedings.

Meanwhile, two other on-chip sensors relied on measuring ratios to nail the temperature. The first was intended for use in RFIDs, allowing temperature measurements to be sensed by an RFID reader. It therefore needed to be quick and energy efficient.

Their approach measures the ratio of the VBE of a p-type BJT against the difference in the VBEs of two different p-type BJTs. VBE goes down as temperature increases, giving it the cryptic-sounding name complementary-to-absolute-temperature, or CTAT. The VBE difference, however, goes up with rising temperature, making it proportional-to-absolute-temperature, or PTAT.

The ratio is known to vary from 6 to 28 over the military temperature range, so measuring that ratio lets them figure out the temperature. They used a two-step process here, with successive approximation (SAR) giving them a coarse reading, followed by a “zoom” ΔΣ ADC.

Their resulting accuracy was 0.15 °C. The circuit draws 3.4 µA, higher than some other works, but it operates very quickly, providing a lower energy-per-conversion (as a figure of merit) compared to prior works.

You can get more detail on this work in Session 11.7 of the proceedings.

The last BJT ratiometric approach was presented by Intel. Their use model is different, since they’re trying to measure various hot spots on the chip so that they can throttle or even shut things down if they get too hot. The problem is that the exact location of the hot spots is typically not known until very late in the process – possibly even after first silicon, so the sensors must be small enough to insert and move around at the last minute.

They also need them to be fast. They refer to the need to measure “gradients,” which highlights the fact that “gradient” has two meanings. There’s a lot of discussion these days about the effects of temperature gradients across a die – here we refer to the fact that two different points have different temperatures, and that there’s a gradient in the silicon between them.

However, the Intel paper uses “gradient” to refer to the dynamic change in temperature over time. Because they want to be able to detect sharp rises in temperature, the sensor has to work quickly enough to identify such spikes. They can, however, tolerate more error: ±1 °C near throttle temperatures, and even more at lower temperatures.

The ratio they chose was different from that of the prior paper: they used a bandgap reference to generate a CTAT VBE and a temperature-independent reference voltage. They turned the voltages into frequencies that drove counters; the ratio was available from the counters. Further chopping was done to eliminate mismatch errors and noise, taking the noise level down from 0.73 °C to 0.19 °C.

More information on this paper can be found in Session 11.8 of the proceedings.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

ROHM Automotive Intelligent Power Device (IPD)
Modern automotive applications require a variety of circuit protections and functions to safeguard against short circuit conditions. In this episode of Chalk Talk, Amelia Dalton and Nick Ikuta from ROHM Semiconductor investigate the details of ROHM’s Automotive Intelligent Power Device, the role that ??adjustable OCP circuit and adjustable OCP mask time plays in this solution, and the benefits that ROHM’s Automotive Intelligent Power Device can bring to your next design.
Feb 1, 2024
11,517 views