industry news
Subscribe Now

Imec Achieves Record Low Contact Resistivity on Ga-doped Ge Source/Drain Contacts for pMOS Transistors

LEUVEN, Belgium—Dec. 4, 2017 – At this week’s 2017 International Electron Devices Meeting (IEDM), imec, the world-leading research and innovation hub in nanoelectronics and digital technology, reports ultralow contact resistivity of 5×10-10Ωcm2 on Gallium (Ga)-doped p-Germanium (Ge) source/drain contacts. The low contact resistivity and high level of Ga activation were achieved after nanosecond laser activation (NLA) at low thermal budget. The results show that highly Ga-doped Ge-rich source/drain contacts provide a promising route for suppressing parasitic source/drain resistance in advanced pMOS devices.

These  breakthrough results are important in light of further downscaling of the CMOS source/drain contact area, which is challenged by a parasitic source/drain resistance and results in suboptimal transistor functioning. High dopant activation is known to be an attractive approach for lowering source/drain contact resistance. Traditionally in pMOS devices, Silicon (Si) source/drain contacts with high boron (B) activation are used. But in more advanced pMOS devices, Ge- and SiGe(Sn)-based source/drain are a promising alternative since they introduce beneficial strain. However, the higher the Ge content, the lower the boron activation and solubility in Ge or Ge-rich SiGe.

The new findings result from a comprehensive study of Ga dopant activation in Si, Si0.4Ge0.6 and Ge conducted by imec, KU Leuven (Belgium) and Fudan University (Shangai, China). In this study, either rapid thermal annealing (RTA) or Applied Materials’ nanosecond laser activation (NLA) were used as dopant activation technologies, after Ga ion implantation. A record low contact resistivity of 5×10-10Ωcm2 and a high dopant activation level of 5x1020cm-3 were obtained for Ga-doped Ge source/drain contacts after NLA. The low contact resistivity can be attributed to a beneficial Ge/Ga surface aggregation following the NLA process. With RTA activation at 400°C, a contact resistivity as low as 1.2×10-9Ωcm2 was reported. The study shows that Ga might be preferred over B as a dopant for Ge or high-Ge content source/drain contacts in pMOS devices.

“For the first time, we have achieved contact resistivities far below 10-9Ωcm2 for high-Ge content source/drain contacts,” said Naoto Horiguchi, distinguished member of the technical staff at imec. “This proves that Ga doping and activation by NLA or RTA are an attractive alternative to boron doping for these source/drain contacts. It provides a possible path for further performance improvement using the current source/drain schemes in next-generation technology nodes.”

The results were obtained at low thermal budget activation, making Ga doping particularly attractive for devices that require low-thermal budget processing.

Imec’s research into advanced logic scaling is performed in cooperation with key CMOS program  partners including GlobalFoundries, Huawei, Intel, Micron, Qualcomm, Samsung, SK Hynix, SanDisk/Western Digital, Sony Semiconductor Solutions, TOSHIBA Memory and TSMC.

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

Introducing Altera® Agilex 5 FPGAs and SoCs

Sponsored by Intel

Learn about the Altera Agilex 5 FPGA Family for tomorrow’s edge intelligent applications.

To learn more about Agilex 5 visit: Agilex™ 5 FPGA and SoC FPGA Product Overview

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

Exploring the Potential of 5G in Both Public and Private Networks – Advantech and Mouser
Sponsored by Mouser Electronics and Advantech
In this episode of Chalk Talk, Amelia Dalton and Andrew Chen from Advantech investigate how we can revolutionize connectivity with 5G in public and private networks. They explore the role that 5G plays in autonomous vehicles, smart traffic systems, and public safety infrastructure and the solutions that Advantech offers in this arena.
Apr 1, 2024
4,775 views