industry news
Subscribe Now

X-FAB Offers Unique Substrate Coupling Analysis Solution to Address Unwanted Parasitic Effects

Powerful new tool facilitates first-time-right analog & high voltage design implementation in even the most challenging of scenarios

Tessenderlo, Belgium – May 9, 2019

Continuing to drive innovation in analog/mixed-signal IC fabrication, X-FAB Silicon Foundries SE (http://www.xfab.com/) has announced the introduction of SubstrateXtractor.

Unwanted substrate couplings can impact modern IC developments, causing parasitic effects that are damaging to overall performance. Engineers have to deal with this by taking a slow and laborious ‘trial and error’ approach, which calls for the allocation of many hours of experienced engineers’ time while numerous different design iterations are made and then experimented with.

The objective of SubstrateXtractor is to change all that. Created in partnership with Swiss EDA software vendor PN Solutions, and based on its innovative PNAware product, this is the semiconductor industry’s first commercially available tool dedicated to addressing the simulation of large signal substrate parasitic effects. Working in conjunction with X-FAB’s established simulation libraries, it allows engineers to investigate where potential substrate coupling issues could occur and make the changes necessary to eliminate them (via better floorplanning, guard rings, etc.) before the initial tape-out has even begun.

Through it, engineers will gain full visibility of all the active and passive elements within the substrate and be able to experiment with different simulations in order to find a design concept that delivers maximum substrate coupling immunity within the project’s particular parametric constraints. Furthermore, they are able to determine the minimum number of substrate contacts and guard rings needed for a project, no matter how complex and sophisticated it is – thereby resulting in more effective utilization of the available area.

“By employing the SubstrateXtractor tool, layout engineers will be able to uncover any adverse substrate effects early on in the development cycle and subsequently mitigate them,” explains Joerg Doblaski, Director of Design Support at X-FAB. “This will make IC implementation procedures far more streamlined and quicker to complete, avoiding the need to rework designs to increase levels of optimization, and resulting in significant cost savings.”

SubstrateXtractor is set to dramatically reduce the number of design iterations required – leading to much lower engineering overheads. This results in a faster time to market making a first-time-right analog design possible. From now onwards this functionality will be integrated into X-FAB’s process design kit (PDK) and available for use with the company’s popular XH018 (https://www.xfab.com/technology/cmos/018-um-xh018/) high voltage 0.18µm mixed-signal CMOS offering. A version for the power management process XP018 will soon follow. A detailed webinar on this valuable new tool will be hosted on May 22nd and 23rd. For details and to register, click here (https://register.gotowebinar.com/rt/7742535881476974860).

About X-FAB

X-FAB is the leading analog/mixed-signal and MEMS foundry group manufacturing silicon wafers for automotive, industrial, consumer, medical and other applications. Its customers worldwide benefit from the highest quality standards, manufacturing excellence and innovative solutions by using X-FAB’s modular CMOS and SOI processes in geometries ranging from 1.0 to 0.13 µm, and its special SiC and MEMS long-lifetime processes. X-FAB’s analog-digital integrated circuits (mixed-signal ICs), sensors and micro-electro-mechanical systems (MEMS) are manufactured at six production facilities in Germany, France, Malaysia and the U.S. X-FAB employs about 4,000 people worldwide. For more information, please visit www.xfab.com

Leave a Reply

featured blogs
Aug 12, 2022
Relive Design Automation Conference (DAC) 2022 with intern Samir Banerjee, including the latest on cloud EDA tools, climate action, and diversity in engineering. The post Reflecting on the 59th Design Automation Conference (DAC) appeared first on From Silicon To Software....
Aug 11, 2022
Speed increase requirements keep on flowing by in all the domains surrounding us . The s ame applies to memory storage too . Earlier mobile devices used eMMC based flash storage, which was a significantly slower technology. With increased SoC processing speed, pairing it with...
Jul 27, 2022
It's easy to envisage a not-so-distant future when sophisticated brain-computer interfaces become available for general-purpose infotainment use....

featured video

Synopsys Design Compiler® NXT: The Latest Evolution in the Design Compiler Family

Sponsored by Synopsys

Do you want faster runtime and better QoR? Watch this video to learn more about the latest innovation in the industry’s first, most trusted, and market-leading RTL synthesis solution: Synopsys Design Compiler® NXT

Learn More

featured chalk talk

Current Sense Resistor - WFC & WFCP Series

Sponsored by Mouser Electronics and Vishay

If you are working on a telecom, consumer or industrial design, current sense resistors can give you a great way to detect and convert current to voltage. In this episode of Chalk Talk, Amelia Dalton chats with Clinton Stiffler from Vishay about the what, where and how of Vishay’s WFC and WFCP current sense resistors. They investigate how these current sense resistors are constructed, how the flip-chip design of these current sense resistors reduces TCR compared to other chip resistors, and how you can get started using a Vishay current sense resistor in your next design.

Click here for more information about Vishay / Dale WFC/WFCP Metal Foil Current Sense Resistors