industry news
Subscribe Now

X-FAB Becomes First Foundry to Offer High-Volume Micro-Transfer Printing Capabilities Following Licensing Agreement with X-Celeprint

Long-term collaboration, plus major engineering investment, leads to highly cost-effective, scalable, and convenient methodology for heterogeneous integration of different semiconductor process technologies.

(Tessenderlo, Belgium; Cork, Ireland, and Research Triangle Park, NC – September 7, 2021) X-FAB Silicon Foundries, the leading foundry for analog/mixed-signal and specialty semiconductor solutions, is now able to support volume heterogeneous integration via Micro-Transfer Printing (MTP), thanks to a licensing agreement that has just been secured with X-Celeprint. This will mean that a diverse range of semiconductor technologies may be combined together, each being optimized for particular functional requirements. These will include SOI, GaN, GaAs and InP, as well as MEMS.

In order to become the first foundry to provide customers with MTP-based heterogeneous integration, X-FAB has made substantial investments over the last two years. It has also established new optimized workflows and cleanroom protocols. This will allow customers to work with the foundry on heterogeneous design projects – benefitting from a low-risk and fully scalable business model that offers a clear migration to volume production.

X-Celeprint’s proprietary massively-parallel pick-and-place MTP technology stacks and fans-out ultra-thin dies based on different process nodes, technologies, and wafer sizes. It results in the formation of virtually monolithic 3D stacked ICs, which have enhanced performance, greater power efficiency, and take up less space. Furthermore, all this can be achieved at an accelerated rate, thereby significantly shortening time-to-market.

“By licensing X-Celeprint’s disruptive MTP technology, we are uniquely positioned in our ability to facilitate the incorporation of numerous different semiconductor technologies. X-FAB customers will be able to utilize a technology that no other foundry is offering, and existing X-Celeprint customers may now tap into capacity levels that will easily meet their future demands,” Volker Herbig, VP of X-FAB’s MEMS business unit, explains. “As a result, we can assist customers looking to implement complete multifunctional subsystems at the wafer level, even when there are high degrees of complexity involved. Signal conditioning, power, RF, MEMS, and CMOS sensors, optoelectronic devices, optical filters, and countless other possibilities will all be covered.”

“Our agreement with X-FAB represents a major milestone in the commercialization of MTP technology, broadening the number of customers and applications,” states Kyle Benkendorfer, X-Celeprint’s CEO. “High-volume heterogeneous integration of elements derived from various different source wafers will provide the semiconductor industry with significant new capabilities, including access to higher density devices with more functionality, fabricated at high yields and lower cost, within shorter timeframes.”

About X-FAB
X-FAB is the leading analog/mixed-signal and MEMS foundry group manufacturing silicon wafers for automotive, industrial, consumer, medical and other applications. Its customers worldwide benefit from the highest quality standards, manufacturing excellence, and innovative solutions by using X-FAB’s modular CMOS and SOI processes in geometries ranging from 1.0 µm to 130 nm, and its special silicon carbide and MEMS long-lifetime processes. X-FAB’s analog-digital integrated circuits (mixed-signal ICs), sensors, and micro-electro-mechanical systems (MEMS) are manufactured at six production facilities in Germany, France, Malaysi,a and the U.S. X-FAB employs about 4,000 people worldwide. www.xfab.com

About X-Celeprint, Ltd.
X-Celeprint licenses MTP technology, which consists of more than 300 worldwide patents and 189 pending applications, to support semiconductor manufacturers in adopting MTP. X-Celeprint is co-located with Micross, which has a Trusted/ITAR-compliant 200mm wafer fab with extensive heterogeneous capabilities, in Research Triangle Park, North Carolina, and Tyndall National Institute in Cork, Ireland. Both facilities have MTP technology in their R&D advanced packaging lines for supporting customers with rapid prototyping. X-Celeprint has research partnerships with academic centers, including the University of Illinois Urbana Champaign and the University of Ghent/imec. www.x-celeprint.com

Leave a Reply

featured blogs
Sep 20, 2021
The Cadence Scholarship Program is the flagship CSR program of Cadence India, introduced five years ago. Many meritorious students from under-served sections of society drop out of the education... [[ Click on the title to access the full blog on the Cadence Community site. ...
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Sep 15, 2021
Learn how chiplets form the basis of multi-die HPC processor architectures, fueling modern HPC applications and scaling performance & power beyond Moore's Law. The post What's Driving the Demand for Chiplets? appeared first on From Silicon To Software....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Maxim Integrated is now part of Analog Devices

Sponsored by Maxim Integrated (now part of Analog Devices)

What if we didn’t wait around for the amazing inventions of tomorrow – and got busy creating them today?

See What If: analog.com/Maxim

featured paper

Seamlessly connect your world with 16 new wireless MCUs for the 2.4-GHz and Sub-1-GHz bands

Sponsored by Texas Instruments

Low-power wireless microcontroller (MCU) shipments are expected to double over the next four years to more than 4 billion units. This massive influx of MCUs will result in more opportunities for wireless connectivity than ever before, with growth across a wide range of applications and technologies. With the addition of 16 new wireless connectivity devices, we are empowering you to innovate, scale and accelerate the deployment of wireless connectivity – no matter what or how you are connecting.

Click to read more

featured chalk talk

Software and Automotive Safety

Sponsored by Siemens Digital Industries Software

In the realm of automotive designs, safety must reign above all else. But the question remains: How can we innovate within the constraints of today’s safety standards? In this episode of Chalk Talk, Amelia Dalton chats with Rob Bates from Siemens about the role ISO 26262 plays when it comes to COTS and open source software, what certified software components are all about, and how heterogeneous multiprocessing can be helpful in your next automotive design.

Click here to download the whitepaper called "Is it Possible to know how Safe we are in a World of Autonomous Cars?