industry news
Subscribe Now

Vishay Intertechnology VCSEL-Based Reflective Optical Sensor Saves Space, Delivers Improved Performance

Offered in Compact 1.85 mm by 1.2 mm by 0.6 mm SMD Package, Device Features CTR of 31 %, Sensing Distance to 15 mm, and Lower Power Consumption

MALVERN, Pa. — Aug. 10, 2023 — The Optoelectronics group of Vishay Intertechnology, Inc. (NYSE: VSH) today introduced a new reflective optical sensor for industrial, computer, consumer, and mobility applications. Saving space compared to previous-generation solutions — while delivering improved performance with a higher current transfer ratio (CTR), increased sensing distance, and lower power consumption — the Vishay Semiconductors VCNT2030 features a vertical-cavity surface-emitting laser (VCSEL) and a silicon phototransistor in a miniature 1.85 mm by 1.2 mm by 0.6 mm surface-mount package.

The device released today features a compact construction in which the emitting light source and detector are arranged in the same plane. It offers excellent internal crosstalk suppression due to the VCSEL’s narrow ± 17° emission angle, which also enables improved proximity performance behind cover glass. The VCNT2030’s analog output signal at the phototransistor is dependent on the amount of light emitted by the VCSEL and reflected off an object in the sensor’s field of view. The device offers a sensing distance of 15 mm, which is three times higher than the closest competing device on the market.

With its compact footprint, the VCNT2030 saves > 40 % PCB space compared to previous-generation devices, allowing the sensor to serve as a space-saving solution for optical switching in industrial infrastructure, home and building controls, notebook and desktop computers, home appliances, consumer electronics, and metering applications; optical encoding for motor control in e-bikes, golf carts, tractors, and harvesters; and paper presence detection in printers and scanners. In these applications the low 8 mA driving current of the device’s VCSEL is enough to achieve the same performance as solutions using 20 mA infrared emitters, dramatically lowering power consumption.

The sensor offers a detection range of 0.3 mm to 6 mm, an emitter wavelength of 940 nm, and a typical output current of 2.5 mA, which represents a typical CTR of 31 % under test conditions. This value is > 100 % higher than previous-generation solutions and the closest competing sensor. The device features a Moisture Sensitivity Level (MSL) of 3 for reflow soldering according to J-STD-020. It is RoHS-compliant, halogen-free, and Vishay Green.

Samples and production quantities of the VCNT2030 are available now, with lead times of eight to 16 weeks.

About Vishay
Vishay manufactures one of the world’s largest portfolios of discrete semiconductors and passive electronic components that are essential to innovative designs in the automotive, industrial, computing, consumer, telecommunications, military, aerospace, and medical markets. Serving customers worldwide, Vishay is The DNA of tech.™ Vishay Intertechnology, Inc. is a Fortune 1,000 Company listed on the NYSE (VSH). More on Vishay at

Leave a Reply

featured blogs
Dec 8, 2023
Read the technical brief to learn about Mixed-Order Mesh Curving using Cadence Fidelity Pointwise. When performing numerical simulations on complex systems, discretization schemes are necessary for the governing equations and geometry. In computational fluid dynamics (CFD) si...
Dec 7, 2023
Explore the different memory technologies at the heart of AI SoC memory architecture and learn about the advantages of SRAM, ReRAM, MRAM, and beyond.The post The Importance of Memory Architecture for AI SoCs appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

3D-IC Design Challenges and Requirements

Sponsored by Cadence Design Systems

While there is great interest in 3D-IC technology, it is still in its early phases. Standard definitions are lacking, the supply chain ecosystem is in flux, and design, analysis, verification, and test challenges need to be resolved. Read this paper to learn about design challenges, ecosystem requirements, and needed solutions. While various types of multi-die packages have been available for many years, this paper focuses on 3D integration and packaging of multiple stacked dies.

Click to read more

featured chalk talk

Portable Medical Devices and Connected Health
Decentralized healthcare is moving from hospitals and doctors’ offices to the patients’ home and office and in the form of personal, wearable, and connected devices. In this episode of Chalk Talk, Amelia Dalton and Roger Bohannan from Littelfuse examine the components, functions and standards for a variety of portable connected medical devices. They investigate how Littelfuse can help you navigate the development of your next portable connected medical design.
Jun 26, 2023