industry news
Subscribe Now

STMicroelectronics Manufactures First 200mm Silicon Carbide Wafers

Transition to 200m wafers marks milestone in capacity build-up to support automotive and industrial markets in the electrification of their systems and products

Geneva, Switzerland, July 27, 2021 – STMicroelectronics (NYSE: STM), a global semiconductor leader serving customers across the spectrum of electronics applications, today announced it has manufactured the first 200mm (8-inch) Silicon-Carbide (SiC) bulk wafers for prototyping next-generation power devices from its facility in Norrköping, Sweden. The transition to 200mm SiC wafers marks an important milestone in the capacity build-up for ST’s customer programs in automotive and industrial sectors and will consolidate ST’s lead in the disruptive semiconductor technology that allows for smaller, lighter, and more efficient power electronics with a lower total cost of ownership.

Among the first in the world, ST’s initial 200mm SiC wafers are also very high quality, with minimal yield-impacting and crystal-dislocation defects. The low defectivity has been achieved by building on the excellent know-how and expertise in SiC ingot growth technology developed by STMicroelectronics Silicon Carbide A.B. (formerly Norstel A.B., which ST acquired in 2019). In addition to meeting the quality challenge, the transition to 200mm SiC substrates requires a step forward in manufacturing equipment and the overall support ecosystem performance. ST, in collaboration with technology partners covering the entire supply chain, is developing its own 200mm SiC manufacturing equipment and processes.

ST currently manufactures its leading-edge, high-volume STPOWER SiC products on two 150mm wafer lines in its fabs in Catania (Italy) and Ang Mo Kio (Singapore) and performs assembly and test at its back-end sites in Shenzhen (China) and Bouskoura (Morocco). This milestone comes as part of the Company’s planned move to more advanced, cost-efficient 200mm SiC volume production. This transition is within the Company’s ongoing plan to build a new SiC substrate plant and source over 40% of its SiC substrates internally by 2024.

The transition to 200mm SiC wafers will bring substantial advantages to our automotive and industrial customers as they accelerate the transition towards electrification of their systems and products”, said Marco Monti, President Automotive and Discrete Group, STMicroelectronics. It is important in driving economies of scale as product volumes ramp. Building robust know-how in our internal SiC ecosystem across the full manufacturing chain, from high-quality SiC substrates to large-scale front- and back-end production, boosts our flexibility and allows us to better control the improvement of yield and quality of the wafers.”

About STMicroelectronics

At ST, we are 46,000 creators and makers of semiconductor technologies mastering the semiconductor supply chain with state-of-the-art manufacturing facilities. An independent device manufacturer, we work with more than 100,000 customers and thousands of partners to design and build products, solutions, and ecosystems that address their challenges and opportunities, and the need to support a more sustainable world. Our technologies enable smarter mobility, more efficient power and energy management, and the wide-scale deployment of the Internet of Things and 5G technology. Further information can be found at www.st.com.

Leave a Reply

featured blogs
Dec 8, 2025
If you're yearning for a project that reconnects you with the roots of our digital age, grab a soldering iron and prepare to party like it's 1979!...

featured news

Need Faster VNX+ Development? Elma Just Built the First Lab Platform for It

Sponsored by Elma Electronic

Struggling to evaluate VNX+ modules or build early prototypes? Elma Electronic’s new 3-slot FlexVNX+ dev chassis streamlines bring-up, testing, and system integration for VNX+ payload cards—SOSA-aligned, lab-ready, and built for fast time-to-market.

Click here to read more

featured chalk talk

Data Center Solutions
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Josue Navarro from Microchip Technologies and Amelia Dalton investigate the biggest challenges of AI servers and the benefits that power modules can bring to these types of designs. They also explore the roles that energy efficiency, power density, thermal management, and security play in the AI server applications and how you can take advantage of Microchip solutions for your next AI server design.
Dec 8, 2025
9,318 views