industry news
Subscribe Now

SiTime Enables Up to 25% Faster Wireless Charging with MEMS Timing Solution

Innovative Digitally Controlled Oscillator Delivers Up To 90% Area Reduction

September 29, 2021 – SANTA CLARA, Calif.– SiTime® Corporation (NASDAQ: SITM), a market leader in MEMS timing, today introduced the SiT3901 µPower digitally controlled MEMS oscillator (DCXO) targeting power-sensitive and space-constrained mobile and IoT applications. The SiT3901 improves wireless charging speed by up to 25% while reducing the overall timing solution area by up to 90%. The MEMS oscillator is ideal for wireless charging systems for smartwatches, activity trackers, hearing aids, and wearables.

“As electronics evolve, SiTime’s combination of innovative MEMS, programmable analog, and rapid release methodology continues to solve challenging timing problems quickly,” said Piyush Sevalia, executive vice president of marketing at SiTime. “The power and size requirements of new wireless applications demand a new approach to timing. The SiT3901 DCXO is the industry’s first µPower digitally controlled oscillator, and it delivers by improving charging efficiency and reducing the area.”

Wireless charging standards such as Qi and AirFuel rely on resonant power transfer to enable proximity charging. However, environmental interference may dynamically impact the resonant charging frequency, which slows down the charging process. The SiT3901 enables the charger to dynamically tune the resonant frequency, maximizing power transfer and delivering up to 25% faster charging. The digital control feature on the SiT3901 DCXO eliminates the need for additional passive components on the board, reducing the timing solution area by up to 90%. The resulting charging system works better and is smaller, more manufacturable, and more reliable.

Features of the SiT3901 Digitally Controlled MEMS Oscillator

The SiT3901 DCXO is the latest addition to the SiTime µPower MEMS oscillator family targeting power and space-constrained wearable, hearable, IoT, and mobile applications. µPower MEMS oscillators consume up to 90% less power and up to 90% less space compared to quartz oscillators, enabling environmentally friendly electronics. The SiT3901 offers high resilience to analog noise and includes the following features:

  • Ultra-low 105 micro-amps of current consumption (typical)
  • Ultra-wide digital pull range (up to 15%) for output frequency
  • Stability over temperature of ±50 and ±100 ppm
  • Wide temperature range, from -40 oC to +85 oC
  • Ultra-small 1.5 mm x 0.8 mm package size
  • Programmable frequency from 1 MHz to 26 MHz

Learn more about the SiTime SiT3901 µPower digitally controlled oscillators.

Discover the full range of SiTime MEMS-based timing solutions for Mobile and IoT

Download SiTime SiT3901 image.

About SiTime

SiTime Corporation is a market leader in silicon MEMS timing. Our programmable solutions offer a rich feature set that enables customers to differentiate their products with higher performance, smaller size, lower power, and better reliability. With over 2 billion devices shipped, SiTime is changing the timing industry. For more information, visit www.sitime.com.

Leave a Reply

featured blogs
Oct 19, 2021
Learn about key roadblocks to improve ADAS systems & higher levels of autonomous driving, such as SoC performance, from our 2021 ARC Processor Virtual Summit. The post Top 5 Challenges to Achieve High-Level Automated Driving appeared first on From Silicon To Software....
Oct 19, 2021
Today, at CadenceLIVE Europe, we announced the Cadence Safety Solution, a new offering targeting safety-critical applications and featuring integrated analog and digital safety flows and engines for... [[ Click on the title to access the full blog on the Cadence Community si...
Oct 13, 2021
How many times do you search the internet each day to track down for a nugget of knowhow or tidbit of trivia? Can you imagine a future without access to knowledge?...
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...

featured video

Digital Design Technology Symposium

Sponsored by Synopsys

Are you an SoC designer or manager facing new design challenges driven by rapidly growing and emerging vertical segments for HPC, 5G, mobile, automotive and AI applications?

Join us at the Digital Design Technology Symposium.

featured paper

Voltage Balancing Techniques for Series Supercapacitor Connections

Sponsored by Maxim Integrated (now part of Analog Devices)

For applications where supercapacitors need to be charged to more than 2.5V or 2.7V, engineers are forced to connect multiple supercapacitors in a series. This application note reviews the voltage balancing techniques in series supercapacitor connections for Maxim’s MAX38886/MAX38888/MAX38889 backup regulators.

Click to read more

featured chalk talk

UWB: Because Location Matters

Sponsored by Mouser Electronics and Qorvo

While technologies like GPS, WiFi, and Bluetooth all offer various types of location services, none of them are well-suited to providing accurate, indoor/outdoor, low-power, real-time, 3D location data for edge and endpoint devices. In this episode of Chalk Talk, Amelia Dalton chats with Mickael Viot from Qorvo about ultra-wideband (UWB) technology, and how it can revolutionize a wide range of applications.

Click here for more information about Qorvo Ultra-Wideband (UWB) Technology