industry news
Subscribe Now

Sequential Infiltration Synthesis (SIS) Significantly Improves EUV Patterning

SAN FRANCISCO (US), FEBRUARY 25, 2019 — This week, at the SPIE Advanced Lithography conference 2019, imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, demonstrates the positive impact of sequential infiltration synthesis (SIS) on the EUVL (extreme ultra-violet lithography) patterning process. This post-lithography technique is shown to significantly reduce stochastic nano-failures and line roughness, contributing to the introduction of EUVL patterning of future nodes”. This work integrates recent advancements on metrology and etch, and on material developments, which will be presented in multiple papers at this week’s 2019 SPIE Advanced Lithography Conference.

SIS is an existing technique, used in directed self-assembly (DSA) and now applied in EUV lithography, in which the photoresist is infiltrated with an inorganic element to make it harder and more robust, thereby enhancing the patterning performance on different parameters. Imec and partners show the first comparison between an EUVL-SIS and a standard EUVL patterning process demonstrating the benefits of SIS regarding roughness, nano-failure mitigation and local variability. When adding an SIS step during a full pattern transfer in a TiN layer, imec observed a improvement of 60 % for intrafield local critical dimension uniformity (LCDU) and 10% for line edge roughness compared to a reference process. These patterning enhancements are inherent properties of SIS. Also, the number of nanobreaks – a typical stochastic nano-failure – is reduced by at least one order of magnitude. Results were confirmed in an industrial relevant use case, showing reduced defectivity in a logic chip with a 20% smaller tip-to-tip critical dimension at a similar LCDU as a standard EUVL process.

The improvement SIS showcases on all parameters is indebted to imec’s EUV lithography and metrology infrastructure and recent advancements in the field of process control, material and etch research. The current work brings these results and competences together in one paper, establishing SIS as a significant EUV patterning enhancement technique. The progress on each of the integrated aspects and SIS will be presented on the SPIE Advanced Lithography conference in multiple papers.

The work was performed in collaboration with ASM and ASML.

“The recent achievements with SIS for EUV lithography were enabled by the progress imec and its partners have made in various domains such as materials science, deposition, imaging, and metrology.  This is a great example of how the integration of knowledge and combined efforts from multiple domains and ecosystem partners will enable a path to scale to N3 and beyond.”  Greg McIntyre, director of advanced patterning at imec.

About imec

Imec is a world-leading research and innovation hub in nanoelectronics and digital technologies. The combination of our widely acclaimed leadership in microchip technology and profound software and ICT expertise is what makes us unique. By leveraging our world-class infrastructure and local and global ecosystem of partners across a multitude of industries, we create groundbreaking innovation in application domains such as healthcare, smart cities and mobility, logistics and manufacturing, energy and education.

As a trusted partner for companies, start-ups and universities we bring together more than 4,000 brilliant minds from over 85 nationalities. Imec is headquartered in Leuven, Belgium and has distributed R&D groups at a number of Flemish universities, in the Netherlands, Taiwan, USA, China, and offices in India and Japan. In 2017, imec’s revenue (P&L) totaled 546 million euro. Further information on imec can be found at www.imec-int.com.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a “stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shanghai) Co. Ltd.) and imec India (Imec India Private Limited), imec Florida (IMEC USA nanoelectronics design center).

Contact: Hanne Degans, Press communications manager, +32 16 28 17 69 // +32 486 06 51 75 // Hanne.Degans@imec.be

Leave a Reply

featured blogs
Jun 5, 2020
'€œYou'€™ll know it when you see it.'€ Have you had that moment where you know what you want but don'€™t know what it is? So you start looking around the store, the internet, or your house to find it. To help you find those '€œknow it when you see it'€ solutions...
Jun 4, 2020
[From the last episode: We started this new with a broad introduction to machine learning.] While neuromorphic neural networks '€“ that is, ones that work the way our brains work '€“ may still be off in the future a ways, someone came up with a different way to emulate th...
Jun 2, 2020
It just struck me that I have only 37 years remaining to complete my Countdown Timer project before it becomes superfluous to requirements....

Featured Video

DesignWare 112G Ethernet PHY IP Insertion Loss Capabilities

Sponsored by Synopsys

This video shows the performance results of the Synopsys 112G PHY receiver to varying amounts of channel insertion loss. The IP meets the standards requirements. With leading power, performance, and area, the IP is available in a range of FinFET processes for high-performance.

Click here for more information

Featured Paper

Five Things You Should Know About Linear Regulators

Sponsored by Maxim Integrated

While linear regulators (LDOs) seem relatively simple, many situations occur in which LDOs perform contrary to your expectations. This application note explores five of those situations, including startup, quiescent current near dropout, load transient performance, PSRR and noise, and input protections. Understanding these situations will improve product selection and debug processes.

Click here to download the whitepaper

Featured Chalk Talk

The Future of Automotive Interconnects

Sponsored by Mouser Electronics and Molex

The modern automobile is practically a data center on wheels, with countless processors, controllers, sensors, and intelligent systems that need to communicate reliably. Choosing the right interconnect solutions is front and center in the design of these complex systems. In this episode of Chalk Talk, Amelia Dalton chats with Rudy Waluch of Molex about interconnect solutions for today’s automotive designs.

Click here for more information about about Molex Transportation Solutions