industry news
Subscribe Now

SAB MOSFET Boards Balance High Voltage Supercapacitors Through Revolutionary Low-Power Leakage Current Regulation

SUNNYVALE, Calif. Dec 04, 2017 – Advanced Linear Devices Inc. (ALD), a design innovation leader in analog semiconductors, today announced a high-voltage supercapacitor balancing printed circuit boards (PCBs) designed to automatically control leakage current and enhance reliability for applications used in data center, industrial automation, public utility, and transportation systems.  

ALD SABMB810028 boards built with ALD810028SCLI SAB MOSFETs provide balancing for 2.8-volt (V), 3.0V and 3.3V supercapacitors arranged in a series stack by equalizing the leakage current of each cell. ALD SAB MOSFET arrays used in each board provide industry’s most scalable, low-power solution. Additionally, the MOSFETS balance each cell through low levels of leakage current without exposure to supercapacitor charge/discharge voltage levels for cells of 3000 Farad (F) or more.

“New higher voltage supercapacitors being introduced to address the energy storage needs of data centers and industrial automation require high reliability to meet very demanding standards for backup power systems,” said Robert Chao, President and Founder, Advanced Linear Devices Inc. “These boards provide the ideal platform for balancing high voltage supercapacitors through a low-voltage, low leakage and low current controlling method in a small and scalable form factor.”

ALD SABMB810028boards are rated for -40C to +85C and are available with the following voltage ratings:

  •    2.8V with one microampere (µA) operating current;
  •    3V with 100µA operating current;
  •    3.3V with 1,000µA (1 milliamp) operating current.

In many cases, the operating current is equivalent in magnitude to the leakage current of the supercapacitors.

Overvoltage is a leading cause of failures for supercapacitors. Design engineers need to balance all supercapacitor cells in a stack of two or more to fight overvoltage. ALD’s SAB MOSFET(s) installed on the board play a vital role in preventing overvoltage, and the boards enable system engineers to test, evaluate, prototype or enter production volume. ALD SAB MOSFET technology provides a superior circuit design to other passive or active balancing  scheme through superior cost and design space options for  supercapacitor leakage currents. 

The boards are scalable to meet the growing application of multiple supercapacitor cells in modules to meet the energy storage needs of higher voltage systems. Engineers looking to meet the needs of new 700-volt systems, for example, could arrange 64 ALD SABMB810028 boards together to ensure safe voltage balancing.

The ALD SAB MOSFET boards allow supercapacitor cell charging and discharging currents to pass through the cells themselves directly, bypassing SAB MOSFETs mounted on the board with near zero additional leakage current, a superior alternative to other methods where additional power dissipation used by the circuitry far exceeds the supercapacitor energy burn caused by leakage currents.

SABMB810028 board is designed for ease of use as a plug-and-play PCB for supercapacitors of 0.1 farads (F) to 3000F and beyond. The average additional power dissipation due to DC leakage of the supercapacitor is zero, which makes this method of supercapacitor balancing highly energy efficient and well suited for low-loss energy harvesting and long-life battery operated applications. 

Products can be ordered directly from ALD or ordered from online distributors DigiKey or Mouser. Prices start at $30.17 each for boards ordered in volume. boards. 

About Advanced Linear Devices, Inc. Advanced Linear Devices, Inc. (ALD) is a design innovation leader in analog semiconductors specializing in the development and manufacture of precision CMOS linear integrated circuits, including analog switches, A/D converters and chipsets, voltage comparators, operational amplifiers, energy harvesting systems, analog timers, and conventional and precision EPAD MOSFET transistors. For more information about Advanced Linear Devices go to www.aldinc.com.

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Using the Vishay IHLE® to Mitigate Radiated EMI
Sponsored by Mouser Electronics and Vishay
EMI mitigation is an important design concern for a lot of different electronic systems designs. In this episode of Chalk Talk, Amelia Dalton and Tim Shafer from Vishay explore how Vishay’s IHLE power inductors can reduce radiated EMI. They also examine how the composition of these inductors can support the mitigation of EMI and how you can get started using Vishay’s IHLE® High Current Inductors in your next design.
Dec 4, 2023
19,289 views