industry news
Subscribe Now

Renesas Launches Virtual Development Environment for Fast Automotive Application Software Development and Evaluation

New Environment Allows Customers to Bring Leading-Edge Software to Market Quickly

Düsseldorf, April 12, 2022 ― Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today announced the launch of a virtual development environment that enables advance development and operational evaluation of automotive application software to support the latest requirements of electrical/electronic architecture (E/E architecture). The environment includes a Virtual Turnkey Platform, which allows engineers to develop application software before devices or evaluation boards are available. Additionally, the new environment offers a Multicore Debug and Trace Tool, which enables users to analyze and evaluate the operation of their software as if it were running on an actual chip. These tools will allow customers to kick-start development and get to market faster with leading-edge software.

“With the evolution of E/E architecture, there is an increasing demand for software design that can maximize performance at a system level. At the same time, the increasing time and cost associated with software development have become a big challenge,” said Hiroshi Kawaguchi, Vice President, Automotive Software Development Division at Renesas. “Our integrated software development environment that can be used across gateway systems, ADAS, and xEV development, enables customers to benefit from the scalability of Renesas products such as R-Car and the RH850 family for both software and hardware development.”

As software becomes a critical part of automobiles, customers’ application software becomes larger and more complex. In order to increase the value of their software, customers are looking for new development methods and environments to develop highly reliable software more quickly.

“Virtual Turnkey Platform” Application Software Development Environment

This platform consists of the R-Car Virtual Platform (R-Car VPF) development environment and a software development kit (R-Car SDK) that includes pre-tested software libraries and sample code. R-Car VPF is based on Virtualizer Development Kits (VDKs) from Synopsys, and integrates virtual models of intellectual property (IP) specific to R-Car to customize for R-Car devices. By overlaying the R-Car SDK on this platform, it enables engineers to immediately start development of application software virtually. The platform accurately recreates the behavior of the actual chip and thus eliminates the need to build up a development environment with a physical evaluation board. Multiple users can also develop software simultaneously on separate PCs or servers.

“Multicore Debug and Trace Tool” for Analyzing and Evaluating Software Operation

Once engineers complete the development of multiple software components side by side on the Virtual Turnkey Platform, the next step is to integrate the software and verify that it runs on a single chip. Software components share resources such as the multiple CPUs and IPs on R-Car SoCs. If operational problems are detected after the software components are integrated, it requires a tremendous amount of work to analyze and solve these issues. With this in mind, Renesas created the Multicore Debug and Trace Tool, which simplifies the process of analyzing and identifying the causes of errors occurring from the interaction of the multiple hardware resources in R-Car SoCs. This enables synchronous and simultaneous debugging of the entire heterogeneous architecture of R-Car without using the actual device. This helps identify potential problems and thus accelerates the development process.

Availability
The development environment is available for the R-Car S4 SoC for automotive gateways. Renesas has plans to support the R-Car V4H as well as future versions of R-Car products and RH850 automotive MCUs.

For more information on the Virtual Turnkey Platform, please visit: https://www.renesas.com/products/automotive-products/automotive-system-chips-socs/r-car-virtual-platform.

For more information on the Multicore Debug and Trace Tool, please visit: https://www.renesas.com/software-tool/multi-core-debug-and-trace-tool.

About Renesas Electronics Corporation
Renesas Electronics Corporation (TSE: 6723) empowers a safer, smarter and more sustainable future where technology helps make our lives easier. A leading global provider of microcontrollers, Renesas combines our expertise in embedded processing, analog, power and connectivity to deliver complete semiconductor solutions. These Winning Combinations accelerate time to market for automotive, industrial, infrastructure and IoT applications, enabling billions of connected, intelligent devices that enhance the way people work and live. Learn more at renesas.com. Follow us on LinkedIn, Facebook, Twitter, YouTube and Instagram.

Leave a Reply

featured blogs
Jul 1, 2022
Throughout this season at Formula One, porpoising has been the most talked-about phenomenon, especially with complaints from drivers about blurred vision and severe back aches. Week after week, not... ...
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Demo: Achronix Speedster7t 2D NoC vs. Traditional FPGA Routing

Sponsored by Achronix

This demonstration compares an FPGA design utilizing Achronix Speedster7t 2D Network on Chip (NoC) for routing signals with the FPGA device, versus using traditional FPGA routing. The 2D NoC provides a 40% reduction in logic resources required with 40% less compile time needed versus using traditional FPGA routing. Speedster7t FPGAs are optimized for high-bandwidth workloads and eliminate the performance bottlenecks associated with traditional FPGAs.

Subscribe to Achronix's YouTube channel for the latest videos on how to accelerate your data using FPGAs and eFPGA IP

featured paper

What is “real-time control” and why do you need it?

Sponsored by Texas Instruments

Real-time control is the ability of a closed-loop system to gather data, process that data and update the system within a defined time window. If the system misses that defined window, its stability, precision and efficiency will degrade. Diminished control can be detrimental to system performance; for example, not achieving the necessary speeds or even overheating. This article will explain the functional blocks of a real-time control system and provide an example of a robotics application.

Click to read more

featured chalk talk

The Composite Power Inductance Story

Sponsored by Mouser Electronics and Vishay

Power inductor technology has made a huge difference in the evolution of our electronic system designs. In this episode of Chalk Talk, Amelia Dalton chats with Tim Shafer from Vishay about the history of power inductor technology, how Vishay developed the most compact and efficient power inductor on the market today and why Vishay’s extensive portfolio of composite power inductors might be the best solution for your next embedded system design.

Click here for more information about Vishay Inductors