industry news
Subscribe Now

Renesas Electronics Launches RX23E-A Group, First RX Microcontrollers Built-In Industry-Leading Analog Front End For High-Precision Sensing and Measurement Equipment

Deliver Better-than 0.1% Precision Performance in Temperature, Pressure, and Other Measurements, Ideal for Both Manufacturing and Test and Measurement Equipment
Düsseldorf, May 28, 2019 – Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RX23E-A Group 32-bit RX microcontrollers (MCUs), combining high-precision analog front end (AFE) and an MCU on a single chip. Designed for manufacturing and test and measurement equipment applications that require high-precision measurements of analog signals for temperature, pressure, weight, and flow, the RX23E-A MCUs are the first Renesas solutions to enable such signals to be measured with better than 0.1% precision without calibration.
The new MCUs achieve AFE precision at the highest class in the industry (offset drift: 10 nV/°C, gain drift: 1 ppm/°C, and RMS noise: 30 nV rms), a level that could previously only be achieved by combining dedicated A/D converter circuits with high-precision operational amplifier ICs. By integrating this high-precision AFE IP (intellectual property) on a single chip using the same fabrication process technology, Renesas has made it possible to implement high-precision sensor measurement, computation, control, and communications on a single chip. This allows system manufactures to reduce the number of required components, save space, and simplify system design in a wide range of equipment requiring high-precision measurement, such as sensing, temperature controllers, recording, weighing, and force sensing. It also accelerates endpoint intelligence by enabling distributed processing with MCUs.
“The RX23E-A MCUs will radically evolve the structure of high-precision analog measurement systems,” said Akira Denda, Vice President, Industrial Automation Business Division, Renesas Electronics Corporation. “Moving forward, Renesas is aiming to deliver an extensive product line, starting with the RX23E-A Group, that integrates MCUs and high-precision analog on a single chip for programmable logic controllers, distributed control system applications, and test and measurement equipment that require a variety of higher precision measurements.”
With big data-driven quality and productivity improvements, the pressure is on for factories and manufacturing sites to measure a wide variety of sensor data accurately and reliably. Since users require stability when measuring small signals at high precision over a wide environmental temperature range, it is important to reduce noise characteristics and temperature drift characteristics to low levels. To address to these needs, Renesas has developed a high-precision AFE and integrated it into an RX MCU with an extensive track record with industrial applications.
The RX23E-A MCUs are based on the RXv2 core, which features operating speeds of 32 MHz, a digital signal processor (DSP), and superlative floating point unit (FPU) calculations. This allows the implementation of adaptive control using temperature data and inverse matrix calculations using 6-axis distortion data. For example, robot arm force sensors require the measurement and calculation of the 6-axis distortion in a small space. The RX23E-A MCUs make it possible to measure the 6-axis distortion data and perform the inverse matrix calculations with a single chip
 
Key features of the RX23E-A MCUs
 
  • AFE block
  • 24-bit delta-sigma A/D converter: Up to 23 bits of effective resolution. Data output rate flexible at 7.6 PS to 15.6 kPS.
  • Two 24-bit delta-sigma A/D converters that can start synchronously, allowing sensor temperature correction to be performed without switching channels.
  • PGA (programmable gain amplifier): Rail-to-rail input PGA allows amplification up to 128×. Offset drift: 10 nV/°C, gain drift: 1 ppm/°C, and RMS noise: 30 nV rms.
  • Voltage reference: Low temperature drift characteristics of 4 ppm/°C with superlative temperature stabilization.
  • Excitation current source: Programmable current source with required matching required for 3-wire resistance temperature detector.
  • Analog inputs: differential inputs: up to 6 channels, pseudo-differential inputs: up to 11 channels, single-ended inputs: up to 11 channels. All can be used as inputs to the two A/D converters.
  • MCU block
  • CPU: 32-bit RXv2 core operating at 32 MHz
  • Digital signal processing can be implemented with DPS instructions and FPU.
  • ROM/RAM: ROM: 128 to 256 KB, RAM: 16 to 32 KB.
  • Communication interfaces: SPI (1 channel), UART (4 channels), I2C (1 channel), CAN (1 channel).
  • Functional safety: software load reduced by Self-diagnostic and disconnection-detection assistance functions for the A/D converter, clock frequency accuracy measurement circuit, independent watchdog timer, RAM test assistance functions using the DOC and other circuits.
  • Supply voltage: 5V. Independent power supplies can be used for the AFE block and microcontroller. Voltages of 1.8 to 5.5 V can be supported.
  • Operating temperature: -40°C to +85°C, -40°C to +105°C
  • Package: 48-pin QFP with 7 mm square. 40-pin QFP with 6 mm square.
 
Availability
Samples of the RX23E-A Group of MCUs are available now with mass production planned for December 2019. (Availability are subject to change without notice.)
 
More Information
To learn more about the new Renesas RX23E-A MCUs, visit https://www.renesas.com/products/microcontrollers-microprocessors/rx/rx200/rx23e-a.html.
About Renesas Electronics Corporation
Renesas Electronics Corporation (TSE: 6723) delivers trusted embedded design innovation with complete semiconductor solutions that enable billions of connected, intelligent devices to enhance the way people work and live. A global leader in microcontrollers, analog, power, and SoC products, Renesas provides comprehensive solutions for a broad range of automotive, industrial, home electronics, office automation, and information communication technology applications that help shape a limitless future. Learn more at renesas.com.

Leave a Reply

featured blogs
Apr 23, 2024
Do you think you are spending too much time fine-tuning your SKILL code? As a SKILL coder, you must be aware that producing bug-free and efficient code requires a lot of effort and analysis. But don't worry, there's good news! The Cadence Virtuoso Studio platform ha...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Current Sense Shunts
Sponsored by Mouser Electronics and Bourns
In this episode of Chalk Talk, Amelia Dalton and Scott Carson from Bourns talk about the what, where and how of current sense shunts. They explore the benefits that current sense shunts bring to battery management and EV charging systems and investigate how Bourns is encouraging innovation in this arena.
Jan 23, 2024
12,862 views