industry news
Subscribe Now

Pusan National University Researchers Develop “Corrosion-Free” Copper Thin Films

The atomically flat copper thin films suppress the growth of copper oxides on their surface
Copper is the most commonly used metal in the electronics industry but its life is limited by unwanted corrosion i.e., oxidation on copper surfaces. Now, scientists from Pusan National University, Sungkyunkwan University, and Mississippi State University, have developed a new method to fabricate atomically flat single-crystal copper thin films with semi-permanent oxidation-resistance, as well as revealed the mechanism behind the oxidation of copper.
Copper (Cu) is of fundamental importance to our daily lives due to its excellent electrical conductivity, as well as other valuable physical properties, such as the ability to draw copper into thin wires. Cu is the metal that is at the heart of the electronics, semiconductor and electro-optics industry. But oxidation and unwanted corrosion on its surface can limit the lifespan and increase the electrical resistance of Cu. Now, a team of researchers led by Prof. Se-Young Jeong from Pusan National University have developed a way to fabricate oxidation-resistant thin films of copper. “Oxidation-resistant Cu could potentially replace gold in semiconductor devices, which would help bring down their costs. Oxidation-resistant Cu could also reduce electrical consumption, as well as increase the lifespan of devices with nanocircuitry,” says Prof. Jeong. The study has been published in Nature.
Previous studies have shown that Cu oxidation occurs due to microscopic ‘multi-steps’ on the surface of copper. These steps provide a source of Cu adatoms (adsorbed atoms), which interact with oxygen and provide a place for oxides to grow. This is why single-crystalline Cu is resistant to oxidation. “We used a method called atomic sputtering epitaxy to grow tightly coordinated flat single-crystal copper films. By using noise reduction systems to reduce electrical and mechanical noises, we were able to keep the Cu surfaces nearly defect-free and fabricate atomically flat films,” explains Prof. Jeong.
The research team then used high-resolution transmission electron microscopy (HR-TEM) to study the Cu films. They found that the film grew in the [111] direction and had an almost flat surface with occasional mono-atomic steps. They then compared the single-crystal Cu (111) films (SCCFs) with other Cu films which had higher surface roughness and found that unlike with the other films, the SCCFs were oxidation-resistant, i.e., it is very difficult for oxygen to penetrate the mono-atomic step edge.
The researchers then used a microscopic model of Cu oxidation based on ‘density functional theory’ to investigate how the SCCF interacts with oxygen. They found that the surface of the SCCF was protected by oxygen itself, once 50% of its surface was covered with oxygen atoms. Additional absorption of oxygen atoms on the SCCF was suppressed by the high energy barrier they, themselves, created.
The novelty of our research lies in the realization of atomically flat surfaces, i.e., surfaces that are flat on the atomic level, as well as an elucidation of the oxidation-resistance mechanism of ultraflat metals,” concludes Prof. Jeong.
The findings of this study make major contributions not only to the electronics and semiconductor industry, but also go a long way towards helping protect priceless bronze sculptures from damage.
Reference
Title of original paper: Flat-surface-assisted and self-regulated oxidation resistance of Cu(111)
Journal: Nature
About Pusan National University
Pusan National University, located in Busan, South Korea, was founded in 1946, and is now the no. 1 national university of South Korea in research and educational competency. The multi-campus university also has other smaller campuses in Yangsan, Miryang, and Ami. The university prides itself on the principles of truth, freedom, and service, and has approximately 30,000 students, 1200 professors, and 750 faculty members. The university is composed of 14 colleges (schools) and one independent division, with 103 departments in all.
 
About the author
Se-Young Jeong is a Professor of Physics at the Department of Optics and Mechatronics Engineering at Pusan National University. He serves as Director of the Crystal Bank Institute. He received his Dr.rer.nat in Crystal Physics from the University of Cologne, Germany in 1990 and joined Pusan National University as faculty in 1992. His research interests include the growth of 2D metal films, electronic behavior in thin films, and control and blocking of oxidation. His group is working on single-crystal metals, mono-atom stepped flat surfaces, and thin metal films to investigate oxidation mechanisms, improve electrical properties, and discover new physical phenomena.

Unsubscribe

Leave a Reply

featured blogs
Jul 20, 2024
If you are looking for great technology-related reads, here are some offerings that I cannot recommend highly enough....

featured video

How NV5, NVIDIA, and Cadence Collaboration Optimizes Data Center Efficiency, Performance, and Reliability

Sponsored by Cadence Design Systems

Deploying data centers with AI high-density workloads and ensuring they are capable for anticipated power trends requires insight. Creating a digital twin using the Cadence Reality Digital Twin Platform helped plan the deployment of current workloads and future-proof the investment. Learn about the collaboration between NV5, NVIDIA, and Cadence to optimize data center efficiency, performance, and reliability. 

Click here for more information about Cadence Data Center Solutions

featured chalk talk

Current Sense Shunts
Sponsored by Mouser Electronics and Bourns
In this episode of Chalk Talk, Amelia Dalton and Scott Carson from Bourns talk about the what, where and how of current sense shunts. They explore the benefits that current sense shunts bring to battery management and EV charging systems and investigate how Bourns is encouraging innovation in this arena.
Jan 23, 2024
25,708 views