industry news
Subscribe Now

Plumbing the Depths: Defect Distribution in Ion-Implanted SiC Diodes

Researchers reveal that aluminum implantation doping in p-type bipolar semiconductors creates defects many layers deeper than the implantation site
Introducing a vertical arrangement of n and p layers into the drift layer of semiconductors to enable bipolar operation is a way around the ‘unipolar limit’ problem in semiconductors. But defect generation during the fabrication of such devices is a matter of concern. Researchers have examined the depth and distribution of defects formed by aluminum ion implantation in silicon carbide bipolar diodes to identify ways to induce efficient conductivity modulation.
Silicon carbide (SiC) unipolar semiconductors are in wide commercial use, but their operations are limited by a trade-off relationship between breakdown voltage and specific resistance of the drift layer, or specific on-resistance. Including a super junction structure, which refers to an arrangement of n and p layers in trenches in the drift layer, or enabling bipolar operation in the device, provides a way to overcome this unipolar limit. Bipolar operation brings about a large decrease in on-resistance by inducing a conductivity modulation in the drift layer. But bipolar operation is not without its disadvantages. Conduction and switching losses in bipolar devices need to be carefully balanced.
P-type contact layers in semiconductors are generally formed via aluminum (Al) doping. Al doping can be achieved in two ways – epitaxial or ion implantation. Epitaxial growth involves the layer by layer deposition of semiconductor materials on a substrate, whereas ion implantation entails bombarding the semiconductor layers with high energy charged particles. But ion implantation leads to the formation of defects deep in the semiconductor layers, which could have a critical effect on conductivity modulation.
In a recent study published in Physica Status Solidi (b)researchers from Japan investigated the depth distribution of defects in SiC bipolar diodes that were formed by Al doping. “Our findings will help with the optimum design of SiC power devices, which will soon be employed in electric vehicles, trains etc. These results will ultimately help improve the performance, as well as the size and energy consumption of traction systems in vehicles and trains,” says Associate Professor Dr. Masashi Kato of Nagoya Institute of Technology, who led the study.
To study the depth distribution of defects, the research team fabricated two SiC PiN diodes with Al doped p-layers, one through epitaxial growth and the other through ion implantation. They then studied the distribution of defects in both diodes using conventional ‘deep level transient spectroscopy’ (DLTS) and characterized its properties using cathodoluminescence (CL). They found that p-type layer deposition by epitaxial growth did not cause damage in the adjacent n-type layers, but that the growth showed slight instability that led to the formation of deep level defects. The specific on-resistance of this diode was also low, thanks to the effects of conductivity modulation.
For the diode formed by ion implantation, however, the researchers found that Al doping achieved a high specific on-resistance without influencing conductivity modulation. Moreover, the researchers observed that the defects in the semiconductor device penetrated to a minimum of 20 µm from the implantation region. “Our study shows that the ion implantation in SiC bipolar devices need to be processed at least 20 µm away from the active regions,” explains Dr. Kato.
The low power consumption of SiC power devices mean that they will be essential in the future as climate change increases and the fossil fuel energy crisis worsens. Improving semiconductor technology rapidly so that it can take its rightful place on the world stage is of paramount importance. With strong results like this to inform future research and manufacturing, we may realize this future sooner than expected!
Reference
Title of original paper: Depth distribution of defects in SiC PiN diodes formed using ion implantation or epitaxial growth
Journal: Physica Status Solidi (b)
About Nagoya Institute of Technology, Japan
Nagoya Institute of Technology (NITech) is a respected engineering institute located in Nagoya, Japan. Established in 1949, the university aims to create a better society by providing global education and conducting cutting-edge research in various fields of science and technology. To this end, NITech provides a nurturing environment for students, teachers, and academicians to help them convert scientific skills into practical applications. Having recently established new departments and the “Creative Engineering Program,” a 6-year integrated undergraduate and graduate course, NITech strives to continually grow as a university. With a mission to “conduct education and research with pride and sincerity, in order to contribute to society,” NITech actively undertakes a wide range of research from basic to applied science.
About Professor Masashi Kato from Nagoya Institute of Technology, Japan
Dr. Masashi Kato graduated in Electrical and Computer Engineering from Nagoya Institute of Technology in 1998 and then proceeded to obtain both a Master’s (2000) and a PhD (2003) in the same field there. He is currently an Associate Professor of Semiconductor Physics and has authored around 100 publications in the course of his career. His field of expertise and research interests lie within electronic/electric materials and device-related chemistry, and he has been a member of The Japan Society of Applied Physics for over two decades.
Funding information:
This study has been supported by SIP (Strategic Innovation Promotion Program) of the Council for Science, Technology and Innovation [Next generation power electronics / Integrated research and development of SiC for next generation power electronics] (management corporation: NEDO).

Leave a Reply

featured blogs
Dec 8, 2022
You will notice a big change when you try to download the latest version of Innovus, Genus, or Joules on our Cadence download site, downloads.cadence.com . Instead of the expected INNOVUS221 or GENUS221, or JOULES221 releases, you will find DDI221, which includes the 22.1 ver...
Dec 7, 2022
We explore hyperscale datacenters & internet traffic's impact on climate change and discuss how energy-efficient system design shapes a sustainable future. The post How the Electronics Industry Can Shape a More Sustainable, Energy-Efficient World appeared first on From ...
Dec 7, 2022
By Karen Chow When Infineon needed to select a field solver for the development of their next-generation power semiconductor products,… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

TI isolation technology: Different by design

Sponsored by Texas Instruments

The need for isolation is growing, and while electromechanical relays, optocouplers and discrete transformers have been widely adopted for signal and power isolation, we're committed to pushing isolation technology further. See where we’re taking our capacitive and magnetic technologies next.

Learn More

featured chalk talk

Enabling Digital Transformation in Electronic Design with Cadence Cloud

Sponsored by Cadence Design Systems

With increasing design sizes, complexity of advanced nodes, and faster time to market requirements - design teams are looking for scalability, simplicity, flexibility and agility. In today’s Chalk Talk, Amelia Dalton chats with Mahesh Turaga about the details of Cadence’s end to end cloud portfolio, how you can extend your on-prem environment with the push of a button with Cadence’s new hybrid cloud and Cadence’s Cloud solutions you can help you from design creation to systems design and more.

Click here for more information about Cadence Cloud Portfolio