industry news
Subscribe Now

Optima Design Automation Announces the “Optima Safety Platform” to Drive Order-of-Magnitude Safety Fault Analysis Performance Improvements

Fault Injection Engine Forms the Basis of Unique Hard and Soft Error Automated Fault Analysis Solutions Accelerating ISO 26262 Verification and Increasing Device Quality

NAZARETH, ISRAEL – October 29, 2019 – Optima Design Automation today rolled out its next-generation Optima Safety Platform, (OSP), based on its Fault Injection Engine (FIE™) technology. OSP includes Optima’s first two automated solutions: Optima-HE™ and Optima-SE™ for hard-error and soft-error analysis, respectively. By increasing fault analysis performance by orders of magnitude over the next fastest solution, Optima offers its customers a reduction in analysis time from months to days, as well as automated coverage improvement and design safety.

OSP has been shown in private benchmarks to increase fault analysis performance more than two orders of magnitude over its nearest rival. To date, fault analysis of large automotive safety critical devices, as stipulated by the ISO 26262 standard, can require months of compute time to perform. By reducing this time to a matter of days or hours, new forms of analysis can be performed that dramatically improve device safety and quality while ensuring an accurate measure of fault resistance. The addition of Optima’s automated CoverageMaximizer™ technology allows for design areas not analyzed during verification to be easily eliminated, further improving the analysis process.

“Up to now, automotive ISO 26262 fault analysis has made use of traditional, slow fault simulation technology designed for a different purposes, using 30-year-old algorithms and methods,” noted Jamil Mazzawi, Optima’s Founder and Chief Executive Officer. “We have taken an entirely new approach to this problem, building the fault-simulation algorithms from the ground up to realize dramatic improvements in this time-consuming process. This has opened the potential for new analysis solutions that allow previously unavailable operations to be performed that maximize functional safety coverage and ultimate device quality.”

Optima Fault Injection Engine Technology
The only tool available for safety fault analysis has been traditional fault simulation, a 30-year-old technique that was designed to target semiconductor manufacturing testing. Optima’s engineering team has developed a new, proprietary set of fault analysis algorithms that specifically targets safety analysis fault injection.

By leveraging modern parallel simulation and formal verification technologies, avoiding issues caused by manufacturing fault simulation requirements, and taking a new slant on fault optimization methods such as fault list pruning and collapsing, the FIE provides revolutionary analysis performance. One private benchmark of the FIE versus the broadly considered fastest rival fault simulator on a commercial design showed the FIE executing more than 1000X faster.

Optima has used the FIE technology as a basis on which to build specialized solutions for different fault scenarios

Optima-HE and Optima-SE Automated Analysis Solutions
The Optima Safety Platform includes a broad range of fault analysis solutions for different applications and industries. Its two initial solutions that target ISO 26262 automotive safety fault analysis provide streamlined solutions for hard errors, or permanent faults, and soft errors, or transient faults.

Optima-HE uses the FIE to perform exhaustive fault analysis for stuck-at-1 and stuck-at-0 hard errors. Based on the ISO 26262 standard categorization, the solution identifies dangerous faults in a design that are not trapped by a safety mechanism and could cause a significant failure that might lead to personal injury. It analyzes large design code bases extremely rapidly, reducing a process that used to require months down to a few days or less. This enables development teams to predict an accurate metric for fault coverage that makes an ASIL-D rating for their devices possible. Furthermore, Optima-HE includes CoverageMaximizer technology that identifies areas of the device not adequately tested and provides guidance for the engineers to cover these hard-to-find gaps in the process.

Optima-SE also uses the FIE to perform soft-error analysis on transient faults. Transient faults are notoriously hard to identify due to their temporary nature. A technique of “flip-flop hardening” for critical areas of the design may be used to eliminate transient fault effects. However, hardening every flip-flop in a design is extremely expensive in terms of silicon area and power consumption. By iteratively applying fault analysis it is possible to identify a subset of the design flips-flops, which if hardened will ensure a high degree of transient fault resistance while minimizing additional flip-flop circuitry. However, this valuable process requires many fault analysis runs making it prohibitive for most device development programs. Leveraging the high performance of the FIE, Optima-SE makes this process possible in a reasonable amount of time, thereby dramatically increasing device quality. Running on a customer design of a commercially available CPU, Optima-SE has been shown to run over 10,000 times faster than regular RTL simulation.

Pricing and Availability
The Optima Safety Platform, including Optima-HE and Optima-SE, both based on the FIE, are available today. The company will release CoverageMaximizer in March 2020. Pricing is available on request.

About Optima Design Automation
Optima Design Automation is the pioneer of next-generation fault analysis for automotive functional safety verification. The company’s product portfolio of automated solutions targets specific fault conditions, accelerating fault simulation stipulated by the ISO 26262 standard by orders of magnitude and enabling a dramatic increase in analysis coverage and ultimate device quality. Optima partners with leading automotive semiconductor vendors and EDA tool providers to create complete solutions that shorten safety critical device time-to-market. Co-funded by the European Union, the company is privately held and is based in Nazareth, Israel. For more information, visit Optima-DA.com.

Leave a Reply

featured blogs
Sep 27, 2020
https://youtu.be/EUDdGqdmTUU Made in "the Alps" Monday: Complete RF Solution: Think Outside the Chip Tuesday: The First Decade of RISC-V: A Worldwide Phenomenon Wednesday: The European... [[ Click on the title to access the full blog on the Cadence Community site. ...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

Texas Instruments: Pushing Power Further

Sponsored by Texas Instruments

Power is all around us. Every connection, every invention begins with power. Watch this short video to see how we are pushing the limits of power management.

Explore our power density portfolio

Featured Paper

The Cryptography Handbook

Sponsored by Maxim Integrated

The Cryptography Handbook is designed to be a quick study guide for a product development engineer, taking an engineering rather than theoretical approach. In this series, we start with a general overview and then define the characteristics of a secure cryptographic system. We then describe various cryptographic concepts and provide an implementation-centric explanation of physically unclonable function (PUF) technology. We hope that this approach will give the busy engineer a quick understanding of the basic concepts of cryptography and provide a relatively fast way to integrate security in his/her design.

Click here to download the whitepaper

Featured Chalk Talk

Power Supply Design

Sponsored by Mouser Electronics and KEMET

There is a bewildering range of choices for components for power supply design. Considering EMI protection, surge protection, transformers, rectifiers - the list goes on and on. In this episode of Chalk Talk, Amelia Dalton chats with Nick Stephen of KEMET to sort out the puzzle of power supply component selection, and to look at the latest trends and best practices in power supply design.

Click here for more information about KEMET Electronics METCOM MPX1 Metal Composite Power Inductors