industry news
Subscribe Now

NVIDIA Partners with Schrödinger to Further Accelerate Drug Discovery Worldwide

Collaboration Enables Pharma Industry Giants, Biotech Startups to Use Schrödinger’s Computational Drug Discovery Platform Boosted by NVIDIA DGX SuperPOD and NVIDIA Clara Discovery Libraries

SANTA CLARA, Calif., April 12, 2021 (GLOBE NEWSWIRE) — GTC — NVIDIA today announced a strategic partnership with Schrödinger that harnesses NVIDIA DGX A100™ systems to further expand the speed and accuracy of Schrödinger’s computational drug discovery platform and enable rapid, accurate evaluation of billions of molecules for potential development of therapeutics.

The companies will optimize Schrödinger’s software platform — designed to model and predict the properties of novel molecules — for the NVIDIA DGX SuperPOD™, which is built with NVIDIA DGX A100 systems and NVIDIA InfiniBand HDR networking.

The work includes the physics-based modeling in Schrödinger’s product suite, as well as support for NVIDIA Clara Discovery, a collection of state-of-the-art AI frameworks, applications and pre-trained models for the most advanced computational drug discovery. Additionally, the companies will partner on scientific and research breakthroughs to further advance physics-based computing and machine learning for drug discovery.

For each potential drug candidate, Schrödinger routinely evaluates tens of thousands of molecules with its most computationally intensive physics-based approaches. This requires hundreds of thousands of hours of GPU time on high-performance computers.

Through the collaboration, the entire pharmaceutical industry comprising over 3,000 companies — from startups to multinationals — will be able to further accelerate drug discovery at supercomputing scale. The joint solution will enable companies of all sizes to simulate molecular combinations with physics and AI to identify and optimize the most promising compounds for potential therapeutic use. Pharmaceutical companies can run this research on their own easy-to-deploy private clouds featuring the Schrödinger platform running on NVIDIA DGX SuperPOD, which is available to install on premises or in a colocation facility.

“The predictive modeling built into our platform is designed to dramatically expand and accelerate the search for high-quality therapeutic molecules, and NVIDIA is a key technology partner in this work,” said Patrick Lorton, chief technology officer at Schrödinger. “Our advanced computational software helps the world’s biggest pharma companies explore more of the chemical space and reach high-quality candidates more quickly, with far less compute cost, than traditional methods. We’re proud to be working with NVIDIA to make that process run even more smoothly.”

NVIDIA research and engineering teams are working to advance and optimize the Schrödinger suite to take advantage of the NVIDIA Ampere architecture and its Multi-Instance GPU technology. Customers will be able to easily deploy Schrödinger software on a single DGX system or a cluster of 20 or more to create a DGX SuperPOD. This allows scaling the Schrödinger platform to dozens of drug programs and screening and evaluating billions of molecules a week.

“Computational drug discovery is improving accuracy with Schrödinger’s advanced combination of simulation with machine learning,” said Kimberly Powell, vice president of healthcare at NVIDIA. “Together, we’re giving the pharmaceutical industry a scientific instrument that delivers super-high-throughput lead generation to improve and accelerate the success of drug candidates.”

NVIDIA‘s (NASDAQ: NVDA) invention of the GPU in 1999 sparked the growth of the PC gaming market and has redefined modern computer graphics, high performance computing and artificial intelligence. The company’s pioneering work in accelerated computing and AI is reshaping trillion-dollar industries, such as transportation, healthcare and manufacturing, and fueling the growth of many others. More information at

Leave a Reply

featured blogs
May 7, 2021
In one of our Knowledge Booster Blogs a few months ago we introduced you to some tips and tricks for the optimal use of Virtuoso ADE Product Suite with our analog IC design videos . W e hope you... [[ Click on the title to access the full blog on the Cadence Community site. ...
May 7, 2021
Enough of the letter “P” already. Message recieved. In any case, modeling and simulating next-gen 224 Gbps signal channels poses many challenges. Design engineers must optimize the entire signal path, not just a specific component. The signal path includes transce...
May 6, 2021
Learn how correct-by-construction coding enables a more productive chip design process, as new code review tools address bugs early in the design process. The post Find Bugs Earlier Via On-the-Fly Code Checking for Productive Chip Design and Verification appeared first on Fr...
May 4, 2021
What a difference a year can make! Oh, we're not referring to that virus that… The post Realize Live + U2U: Side by Side appeared first on Design with Calibre....

featured video

Introduction to EMI

Sponsored by Texas Instruments

Conducted versus radiated EMI. CISPR-25 and CISPR-32 standards. High-frequency or low-frequency emissions. Designing a system to reduce EMI can be overwhelming, but it doesn’t have to be. Watch this video to get an overview of EMI causes, standards, and mitigation techniques.

Click here for more information

featured paper

Compact. Precise. Connected. Increase productivity with intelligent edge computing.

Sponsored by Texas Instruments

Smart devices in factories and buildings are getting smaller and more capable, with enhanced real-time control, robust connectivity, and configurable web services. Read about new processor technology that is unleashing the true potential of Industry 5.0 and the Internet of Things.

Click here to read more

featured chalk talk

Minitek Microspace

Sponsored by Mouser Electronics and Amphenol ICC

With the incredible pace of automotive innovation these days, it’s important to choose the right connectors for the job. With everything from high-speed data to lighting, connectors have a huge impact on reliability, cost, and design. In this episode of Chalk Talk, Amelia Dalton chats with Glenn Heath from Amphenol ICC about the Minitek MicroSpace line of automotive- and industrial-grade connectors.

Click here for more information about Amphenol FCI Minitek MicroSpace™ Connector System