industry news
Subscribe Now

Newly Released Mesh Network Performance Results from Silicon Labs Clarify IoT Connectivity Options

Comprehensive Testing of Zigbee®, Thread and Bluetooth® Mesh Software Compares Throughput, Latency and Network Scalability

AUSTIN, Texas – April 9, 2018 – Silicon Labs (NASDAQ: SLAB) has released the industry’s first comprehensive network performance results based on large-scale, multicast testing of Zigbee®, Thread and Bluetooth® mesh software. Each mesh networking protocol presents unique characteristics and advantages, depending on the use case and end application. All testing was conducted at Silicon Labs’ Boston design center using the company’s Wireless Gecko SoC platform to eliminate the device itself as a variable in testing the mesh protocols.

“Understanding the inner workings of mesh technologies helps developers assess how these network protocols perform in the key areas of power consumption, throughput, security and large network scalability,” said Daniel Cooley, Senior Vice President and General Manager of Silicon Labs’ IoT Products. “Zigbee, Thread and Bluetooth mesh are designed differently from the ground up, and we’re sharing our performance benchmark results to help developers select the right mesh connectivity option for their IoT designs.”

The mesh network benchmark results can be used by system designers to define expected behavior for Zigbee, Thread and Bluetooth mesh in the 2.4 GHz frequency band. With the growing number of mesh networks available for IoT applications, it is important for developers to understand how these networks differ in terms of use cases and expected performance. The testing focused on device behavior and impact on battery life, network throughput and latency, and the impact of network size on scalability and reliability.

Silicon Labs’ mesh network performance results are available as a series of application notes that define the methodology for performing the benchmark tests, enabling developers to replicate and run similar tests. These results provide guidance on mesh network design best practices and principles as well as expected field performance results. With 15 years of experience in mesh networking and more than 150 million deployed nodes, Silicon Labs is at the forefront of bringing advanced, multiprotocol wireless mesh technology to market.

Silicon Labs’ mesh networking performance test results are available free of charge to developers at www.silabs.com/mesh-performance.

Silicon Labs

Silicon Labs (NASDAQ: SLAB) is a leading provider of silicon, software and solutions for a smarter, more connected world. Our award-winning technologies are shaping the future of the Internet of Things, Internet infrastructure, industrial automation, consumer and automotive markets. Our world-class engineering team creates products focused on performance, energy savings, connectivity and simplicity. www.silabs.com

 

2 thoughts on “Newly Released Mesh Network Performance Results from Silicon Labs Clarify IoT Connectivity Options”

Leave a Reply

featured blogs
Sep 21, 2018
On Labor day, I didn't get the day off since I was in Delhi. I had to labor, not celebrate it by eating barbecue. Instead, I ate chicken curry, naan, and fried okra at the lunch I had with Jaswinder Ahuja in a conference room. I knew he had just passed his 30-year annive...
Sep 20, 2018
Last week, NVIDIA announced the release of the Jetson Xavier developer kit. The Jetson Xavier, which was developed in OrCAD, is designed to help developers prototype with robots, drones, and other......
Sep 18, 2018
Samtec performs several tests in-house as part of our qualification testing on a product series; including Low Level Contact Resistance (LLCR). It measures the amount of resistance in a position on a part. LLCR is used in combination with several other tests to track the over...
Sep 9, 2018
  The lease listing on the Pacific American Group'€™s Web site reads: '€œEight Forty Four East Charleston Road is a historically relevant commercial building in Palo Alto. This building was key in the development of Silicon Valley'€™s computer business. Here, Rober...