industry news
Subscribe Now

New Therapeutic for Cartilage Regeneration Flies to the Space Station to Improve Arthritis Treatments on Earth

CAPE CANAVERAL (FL), March 11, 2024 – About one in four adults are affected by arthritis, which can wreak havoc on joints by breaking down the cushioning, called cartilage, between bones. Currently, once cartilage deteriorates, there is no way to replace it. However, researchers from the University of Connecticut recently turned to the International Space Station (ISS) National Laboratory to try to change that.

Yupeng Chen, an associate professor in the department of biomedical engineering at the University of Connecticut, leveraged microgravity conditions on the space station to test an innovative DNA-inspired Janus base nanomaterial that may help repair cartilage. The experiment launched on Northrop Grumman’s 20th Commercial Resupply Services mission.

In this fundamental science investigation, funded by the U.S. National Science Foundation (NSF), Chen sent engineered cartilage tissue, housed in a Space Tango CubeLab, to space to evaluate how effective a nanoparticle therapeutic is at overcoming cartilage deterioration caused by microgravity. Results from this investigation could lead to improved treatments for patients with degenerative joint diseases.

“We’re testing an injectable solid nanomaterial that can be used to repair damaged cartilage,” Chen said. “If our nanomaterial can overcome the negative impact of microgravity, we can use this not only for artificial tissue engineering in space but also to help patients on Earth regenerate their cartilage.”

Mechanical stimulation (walking, running, etc.) is important to overall cartilage health; without it, cartilage can start to degrade. “On Earth, patients who are immobilized due to injury or disease can lose cartilage over time, and once the tissue starts to degrade, it has limited means to repair itself,” Chen said.

Similar cartilage deterioration has been observed in astronauts in space. Because of the lack of mechanical loading in microgravity, cartilage can degrade over time during spaceflight, making the space station an ideal test bed for cartilage regeneration therapies. Chen and his team want to see how well their nanomaterial therapeutic can repair cartilage in space.

“In microgravity, a unique and challenging environment, we can determine whether our nanomaterials can withstand the adverse effects of space,” said Chen. “The findings can be used to help patients on Earth regenerate their cartilage. Additionally, thanks to the injectability of our nanomaterials, we can reproduce authentic cartilage tissue within microfluidic chips. These cartilage tissue chips can then be used to investigate disease mechanisms and formulate new therapeutics, both on Earth and in space.”

This mission included more than a dozen ISS National Lab-sponsored payloads. To learn more about all ISS National Lab-sponsored research on this mission, please visit our launch page.

To download a high-resolution photo for this release, click here.

About the International Space Station (ISS) National Laboratory:

The International Space Station (ISS) is a one-of-a-kind laboratory that enables research and technology development not possible on Earth. As a public service enterprise, the ISS National Laboratory® allows researchers to leverage this multiuser facility to improve quality of life on Earth, mature space-based business models, advance science literacy in the future workforce, and expand a sustainable and scalable market in low Earth orbit. Through this orbiting national laboratory, research resources on the ISS are available to support non-NASA science, technology, and education initiatives from U.S. government agencies, academic institutions, and the private sector. The Center for the Advancement of Science in Space™ (CASIS™) manages the ISS National Lab, under Cooperative Agreement with NASA, facilitating access to its permanent microgravity research environment, a powerful vantage point in low Earth orbit, and the extreme and varied conditions of space. To learn more about the ISS National Lab, visit our website.

As a 501(c)(3) nonprofit organization, CASIS accepts corporate and individual donations to help advance science in space for the benefit of humanity. For more information, visit our donations page.

Leave a Reply

featured blogs
Jul 20, 2024
If you are looking for great technology-related reads, here are some offerings that I cannot recommend highly enough....

featured video

How NV5, NVIDIA, and Cadence Collaboration Optimizes Data Center Efficiency, Performance, and Reliability

Sponsored by Cadence Design Systems

Deploying data centers with AI high-density workloads and ensuring they are capable for anticipated power trends requires insight. Creating a digital twin using the Cadence Reality Digital Twin Platform helped plan the deployment of current workloads and future-proof the investment. Learn about the collaboration between NV5, NVIDIA, and Cadence to optimize data center efficiency, performance, and reliability. 

Click here for more information about Cadence Data Center Solutions

featured chalk talk

Trends and Solutions for Next Generation Energy Storage Systems
Sponsored by Mouser Electronics and onsemi
Increased installations of DC ultra fast chargers, the rise of distributed grid systems, and a wider adoption of residential solar installations are making robust energy storage systems more important than ever before. In this episode of Chalk Talk, Amelia Dalton, Hunter Freberg and Prasad Paruchuri from onsemi examine trends in EV chargers, solar, and energy storage systems, the role that battery storage integration plays in energy storage systems, and how onsemi is promoting innovation in the world of energy storage systems.
Jan 29, 2024
25,238 views