industry news
Subscribe Now

New Silicon Labs Wi-Fi Devices for the IoT Slash Power Consumption in Half

Low-Power Modules and Transceivers Open the Door to New Classes of Battery-Operated Wi-Fi Products

NUREMBERG, Germany (Embedded World) – Feb. 27, 2018 – Silicon Labs (NASDAQ: SLAB) has introduced a new Wi-Fi® portfolio to simplify the design of power-sensitive, battery-operated Wi-Fi products including IP security cameras, point-of-sale (PoS) terminals and consumer health care devices. Optimized for exceptional energy efficiency, the WF200 transceivers and WFM200 modules support 2.4 GHz 802.11 b/g/n Wi-Fi while delivering the high performance and reliable connectivity necessary as the number of connected devices increases in home and commercial networks.

“We’ve delivered the first low-power Wi-Fi portfolio designed specifically for the IoT, enabling breakthroughs in secure, battery-powered connected device designs that simply weren’t possible until now,” said Daniel Cooley, Senior Vice President and General Manager of IoT products at Silicon Labs. “It’s no surprise we’re seeing strong customer demand for Wi-Fi technology that fits within the tight power and space budgets of battery-operated devices, freeing end users from the need to connect to ac power sources.”

According to IHS Markit, the market for Wi-Fi devices in low-power IoT end node applications is forecast to grow from 128 million units per year in 2016 to 584 million units per year by 2021. Developers can speed time to market and miniaturize battery-operated Wi-Fi products with the WFM200, the world’s smallest pre-certified system-in-package (SiP) module with an integrated antenna. Silicon Labs’ WF200 transceiver provides a cost-effective option for high-volume applications and gives developers the flexibility to meet unique system design requirements, such as using external antennas.

The energy-efficient WF200 transceiver and WFM200 module provide an array of benefits for Wi-Fi enabled IoT applications:

  • Exceptionally low transmit (TX: 138 mA) and receive (RX: 48 mA) power
  • 200 µA average Wi-Fi power consumption (DTIM = 3) contributing to ultra-low system power
  • Superior link budget of 115 dBm for long-range Wi-Fi transmissions
  • Small-footprint 4 mm x 4 mm QFN32 transceiver and 6.5 mm x 6.5 mm LGA52 SiP module, ideal for space-constrained applications
  • Excellent antenna diversity and wireless coexistence in crowded 2.4 GHz environments
  • Advanced security technology: secure boot and host interface, hardware cryptography acceleration supporting AES, PKE and TRNG
  • Pre-certification by the FCC, CE, IC, South Korea and Japan to minimize development time, effort and risk
  • Comprehensive development tools and wireless starter kit including embedded and Linux host drivers, enabling developers to get started in minutes

Pricing and Availability

Silicon Labs is sampling WF200 transceivers and WFM200 SiP modules to selected customers, and production parts are planned for Q4 2018. Contact your local Silicon Labs sales representative or authorized distributor for WF200 and WFM200 product pricing. For additional information, visit www.silabs.com/low-power-wi-fi.

Silicon Labs IoT Connectivity Portfolio

Silicon Labs offers the industry’s most comprehensive portfolio of connectivity solutions for the IoT including Wireless Gecko SoCs, transceivers and certified modules supporting Wi-Fi, Bluetooth® low energy (LE), Bluetooth mesh, Zigbee®, Thread and proprietary protocols, as well as multiprotocol and multiband (2.4 GHz/sub-GHz) options.

Silicon Labs

Silicon Labs (NASDAQ: SLAB) is a leading provider of silicon, software and solutions for a smarter, more connected world. Our award-winning technologies are shaping the future of the Internet of Things, Internet infrastructure, industrial automation, consumer and automotive markets. Our world-class engineering team creates products focused on performance, energy savings, connectivity and simplicity. www.silabs.com

Leave a Reply

featured blogs
Nov 24, 2020
The ICADVM20.1 and IC6.1.8 ISR15 production releases are now available for download at Cadence Downloads . For information on supported platforms and other release compatibility information, see the... [[ Click on the title to access the full blog on the Cadence Community si...
Nov 23, 2020
It'€™s been a long time since I performed Karnaugh map minimizations by hand. As a result, on my first pass, I missed a couple of obvious optimizations....
Nov 23, 2020
Readers of the Samtec blog know we are always talking about next-gen speed. Current channels rates are running at 56 Gbps PAM4. However, system designers are starting to look at 112 Gbps PAM4 data rates. Intuition would say that bleeding edge data rates like 112 Gbps PAM4 onl...
Nov 20, 2020
[From the last episode: We looked at neuromorphic machine learning, which is intended to act more like the brain does.] Our last topic to cover on learning (ML) is about training. We talked about supervised learning, which means we'€™re training a model based on a bunch of ...

featured video

Improve SoC-Level Verification Efficiency by Up to 10X

Sponsored by Cadence Design Systems

Chip-level testbench creation, multi-IP and CPU traffic generation, performance bottleneck identification, and data and cache-coherency verification all lack automation. The effort required to complete these tasks is error prone and time consuming. Discover how the Cadence® System VIP tool suite works seamlessly with its simulation, emulation, and prototyping engines to automate chip-level verification and improve efficiency by ten times over existing manual processes.

Click here for more information about System VIP

featured paper

Top 9 design questions about digital isolators

Sponsored by Texas Instruments

Looking for more information about digital isolators? We’re here to help. Based on TI E2E™ support forum feedback, we compiled a list of the most frequently asked questions about digital isolator design challenges. This article covers questions such as, “What is the logic state of a digital isolator with no input signal?”, and “Can you leave unused channel pins on a digital isolator floating?”

Click here to download the whitepaper

featured chalk talk

Nordic Cellular IoT

Sponsored by Mouser Electronics and Nordic Semiconductor

Adding cellular connectivity to your IoT design is a complex undertaking, requiring a broad set of engineering skills and expertise. For most teams, this can pose a serious schedule challenge in getting products out the door. In this episode of Chalk Talk, Amelia Dalton chats with Kristian Sæther of Nordic Semiconductor about the easiest path to IoT cellular connectivity with the Nordic nRF9160 low-power system-in-package solution.

Click here for more information about Nordic Semiconductor nRF91 Cellular IoT Modules