industry news
Subscribe Now

NeoLogic Unveils Novel Processor Design Technology at 16nm, Promising Significant Power, Cost, and Area Reductions

Novel standard cells for 5nm and 3nm technology nodes are under development

The company expects to tapeout a 16nm ARM processor for demonstration this coming December

Israeli processor technology startup NeoLogic is launching a groundbreaking processor design technology that is poised to revolutionize chip design. The company expects to tapeout an ARM processor at 16 nanometers for demonstration this December. The technology and the processor will be available for evaluation to key selected customers.

NeoLogic’s Quasi-CMOS technology serves as a platform for processor design. It delivers high computing power in tandem with reduced power consumption and cost.

The company has completed the development of new, non-existing, standard cells for the 16nm technology node, on top of the existing CMOS standard cells library. NeoLogic’s standard cells are single-stage high fan-in (8 to 16 inputs), among others, leading to up to 50% reduction in power consumption compared to the most advanced equivalent CMOS cells while saving up to 40% of the area.

The technology was conceived to address the increasing workloads in data centers and the need to reduce the high costs associated with developing processors using advanced technology nodes. Designing processors with Quasi-CMOS delivers superior computing power per watt per millimeter square, catering to the escalating workloads of artificial intelligence, machine learning, data analysis, video streaming, and more in data centers.

CMOS technology, which has been the “workhorse” of processor design and fabrication for the past 40 years, is nearing its limits and is challenging to improve. Quasi-CMOS breaks through these limitations by significantly increasing the maximum number of inputs of standard cells and by changing their topology to reduce the number of transistors. This breakthrough benefits the logic synthesis as well as the physical design.

Dr. Avi Messica, Co-founder and CEO of NeoLogic, stated: “Utilizing Quasi-CMOS for processor development delivers a technological leap in performance. Our design technology enables us to design a 16nm processor that delivers performance equivalent to more advanced – sub 16nm – technology nodes, while saving development (NRE) and manufacturing (OPEX) costs. Reducing the processor’s power consumption in data centers leads to significant cost savings (cooling, electricity, infrastructure).”

NeoLogic, which recently secured an 8-million-dollar seed funding, was founded in 2021 by Dr. Avi Messica (CEO) and Ziv Leshem (CTO), both of whom have decades of experience in R&D and management of microprocessors design and fabrication. Dr. Avi Messica (Ph.D. Weizmann Institute of Science) is an expert in solid-state physics and quantum devices and in ultrafast transistors in particular with 26 years of managerial experience in a variety of hi-tech companies. Messica previously served as a device group manager at Tower Semiconductors and has hands-on experience in the design and fabrication of CMOS devices. He also served as VP of Engineering at Shellcase and founded and served as the CEO of three semiconductor companies in the fields of image sensors, MEMS-based optical switches, and photonic chips.

Ziv Leshem has 25 years of experience in processor design. He worked for some of the world’s leading semiconductor companies, such as National Semiconductors, DSPG, and Synopsys, and managed complex processor design projects. He was one of the founders of LogixL, a company that developed a hardware-based HDL simulator and also served as a manager at NewSight Imaging, a developer of LiDAR and iTOF sensors. Before founding NeoLogic he was the manager of the physical design group at Inomize where he managed a group of engineers and developed processors for customers in various industrial sectors in CMOS technologies ranging from 40nm to 7nm.

Leave a Reply

featured blogs
Oct 4, 2023
Explore why multi-die systems adoption calls for collaboration across the semiconductor industry w/ panel insights from EDA experts at Ansys, Bosch, & Intel.The post Industry Insights: How Collaboration Will Accelerate Adoption of Multi-Die Systems appeared first on Ch...
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....

featured video

Intel Agilex® 3 FPGA and SoC FPGA

Sponsored by Intel

Extend Intel Leadership with Intel Agilex® 3, to complete the full spectrum of FPGAs portfolio from high to low, all built on our resilient global supply chain.

Click here to learn more about Intel Agilex® 3 FPGAs

featured paper

Accelerating Embedded Software Development with the Intel® Simics® Simulator for Intel FPGAs

Sponsored by Intel

In a traditional FPGA design flow, the main portion of the software development cannot start until hardware is available. Intel provides the Intel Simics simulator for Intel Agilex 5 SoC FPGAs to give developers a vehicle to exercise their software in parallel with hardware development. Developers can run the same compiled binary software files providing the same results in the software’s execution. Software can be developed, debugged, and verified on the virtual platform up to a year in advance of the physical hardware becoming available.

Click here to learn more about the Intel Simics simulator

featured chalk talk

Electrical Connectors for Hermetically Sealed Applications
Many hermetic chambers today require electrical pathways to provide internal equipment with power, data or signals, or to receive data and signals from equipment within the chamber. In this episode of Chalk Talk, Amelia Dalton and Brad Taras from Cinch Connectivity Solutions explore the role that seals and connectors play in the performance of hermetic chambers. They examine the methodologies to determine hermetic seal leaks, the benefits of epoxy hermetic seals, and how Cinch Connectivity’s epoxy-based seals and hermetic connectors can add value to your next design.
Aug 22, 2023
5,367 views