industry news
Subscribe Now

MLCC World-Wide Shortages drive increased demand for Empower Semiconductor E-CAP™ Capacitor Technology: The Highest Performance, Smallest Size, and Most Configurable Capacitor Technology Platform Ever!

Milpitas, Calif., February 2021 — Empower Semiconductor, the world leader in Integrated Voltage Regulators (IVR), today announced it is increasing production of its E-CAP silicon capacitor technology. E-CAP is a vastly superior performing capacitor, far exceeding the semiconductor industry’s previously leading Multi-Layer Ceramic Capacitors (MLCC), which is amidst another significant supply chain shortage. The MLCC market was estimated at $8.4B in 2018.

MLCC’s are space limiting, inefficient, unreliable, and low performing when compared to E-CAP. Empower Semiconductor has made the most significant advancement for capacitors in decades as E-CAP enables new possibilities for today’s applications due to the incredible size reduction, performance increase, and improved reliability. MLCC’s are also prone to material shortages and pricing volatility as witnessed most recently. The E-CAP silicon capacitor product platform can alleviate supply shortages with the added performance and reliability benefits.

“Since we launched E-CAP in late 2020 there has been unprecedented demand for our technology by industry leaders in mobile and data center products. More recently we have received increased demand due to the supply shortage of MLCC products” said Steve Shultis, Senior Vice President WW Sales and Marketing at Empower Semiconductor. “We knew our performance was winning and the added benefit of our supply chain has created a tremendous surge in demand for E-CAP.”

E-CAP can be an ideal replacement of MLCC products as a power supply bypass capacitor in low voltage DC/DC voltage regulators and in-package for SoC’s and Processors. Empower Semiconductor’s silicon capacitor technology features superior stability with no DC or AC bias de-rating, no temperature de-rating, and no significant effects of aging. Combined with the ultra-low ESL (<15pH), E-CAP provides a highly simplified and reliable solution to the system designer. This highly differentiated high-performance technology is available in configurations up to 8.4 microfarad for operating voltages under 5V. Height limited applications are addressed with the capability of less than 100µm in thickness. This tiny die format allows for footprints that are 80% smaller than equivalent MLCC based solutions.

E-CAP is currently offered in two standard products with additional configurations coming soon. The EC1001 is a 220nF low ESR/ESL silicon capacitor in an 0402 package. It can be used as a replacement for common MLCC values of 0.1 microfarad/0.22 microfarad/0.47microfarad. The EC1100 is a 620nF silicon capacitor array (2.5 x 0.6mm) comprising 5 capacitors that can be combined or used individually. Both products are available as 150microfarad thickness in Tape & Reel.

Empower’s EP70XX IVR family, which is known for its superior performance and unmatched power density, was the first application for E-CAP. Empower has mastered the expertise of leveraging the superior characteristics of the technology to provide its size benefits to a variety of implementations such as die, package, and PCB substrates. The performance benefits allow higher power efficiency to be achieved due to the superior voltage filtering for better SoC/CPU voltage accuracy during load transients.

E-CAP opens up demanding new applications in IoT, wearables, mobile, and processors where size, performance, and flexibility are essential.

Availability: E-CAP product range and details are available at https://www.empowersemi.com/ecap-new-capacitor-silicon-revolution/

About Empower Semiconductor
Empower Semiconductor was founded to solve fundamental problems in power density for data-intensive applications. Traditional power solutions require dozens of discrete components with big footprints, complex designs and deliver power inefficiently with poor response times and inaccuracies. Empower’s patented IVR technology integrates dozens of components into a single IC increasing efficiency, shrinking footprints by 10x and delivering power with unprecedented simplicity, speed & accuracy and with zero discrete components. The Empower IVR™ technology solves the power density challenge to address a wide range of applications including mobile, wearables, 5G, AI, and data centers. In 2020 the capacitor technology platform was added to further address power density. E-CAP revolutionized the capacitor industry as the world’s smallest, highest performing, and incredibly reliable capacitor wearables, mobile, and SoC applications. The company is based in Milpitas, CA and is led by a team of highly experienced power experts and executives.

Leave a Reply

featured blogs
Apr 13, 2021
If a picture is worth a thousand words, a video tells you the entire story. Cadence's subsystem SoC silicon for PCI Express (PCIe) 5.0 demo video shows you how we put together the latest... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Apr 12, 2021
The Semiconductor Ecosystem- It is the definition of '€œHigh Tech'€, but it isn'€™t just about… The post Calibre and the Semiconductor Ecosystem appeared first on Design with Calibre....
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500

Sponsored by Texas Instruments

Functional safety standards such as IEC 61508 and ISO 26262 require semiconductor device manufacturers to address both systematic and random hardware failures. Base failure rates (BFR) quantify the intrinsic reliability of the semiconductor component while operating under normal environmental conditions. Download our white paper which focuses on two widely accepted techniques to estimate the BFR for semiconductor components; estimates per IEC Technical Report 62380 and SN 29500 respectively.

Click here to download the whitepaper

featured chalk talk

Fundamentals of ESD/TVS Protection

Sponsored by Mouser Electronics and Nexperia

ESD protection is a critical, and often overlooked design consideration in many of today’s systems. There is a wide variety of solutions available for ESD protection, and choosing the right one for your design can be a daunting and confusing task. In this episode of Chalk Talk, Amelia Dalton chats with Tom Wolf of Nexperia about choosing the right ESD protection for your next design.

Click here for more information about Nexperia PCMFxUSB3B/C - CMF EMI filters with ESD Protection